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Encadrant Erwann Hillion
Domaine Transport Optimal, Analyse, Géométrie
Bref descriptif Je propose d’encadrer un(e) étudiant(e) autour d’un thème assez général : la
théorie du transport optimal. À partir des rudiments de cette théorie, nous aurons ensuite la
possibilité de partir dans des directions très diverses. Les origines de la théorie du transport
sont traditionnellement attribuées à Gaspard Monge, qui à la fin du XVIIIème siècle a rédigé
un fameux ”mémoire sur la théorie des déblais et remblais” : il s’agit de déplacer un certain tas
de sable, d’une position et configuration données à une autre, en minimisant un certain coût. Il
s’agit donc avant tout d’un problème d’optimisation. Il a fallu attendre le XXème siècle pour
avoir des réponses satisfaisantes à ce problème, en particulier par un certain Leonid Kantorovitch.
En plus de son utilité directe en mathématiques appliquées, la théorie du transport optimal
continue d’être un champ de recherche encore très actif de nos jours. En effet, les solutions des
problèmes posés par Monge et Kantorovitch possèdent des propriétés théoriques très intéressantes
qui ont permis l’émergence d’une nouvelle théorie, mêlant à la fois l’analyse, la géométrie et les
probabilités, développée en particulier par le désormais célèbre Cédric Villani. Parallèlement
à ces développements théoriques, les outils du transport optimal sont de plus en plus utilisés
dans le domaine de la reconnaissance de formes, qui est domaine connaissant un développement
fulgurant depuis quelques années. Comme précisé dans le premier paragraphe, les possibilités
de développements autour du problème initial sont très variées, et ceux-ci pourront être choisis
selon les affinités de l’étudiant(e) associé(e) à ce projet.

Encadrant Florence Hubert
Domaine ODE, maths bio
Bref descriptif Etude et modélisation des interactions entre le système nerveux et les tumeurs
dans le cas d’un cancer du pancréas.

Encadrant Enea Parini
Domaine EDP, analyse, géométrie
Bref descriptif

Le but de ce stage, proposé à des étudiants de L3, est de découvrir les ensembles de pé-
rimètre fini et certaines de leurs propriétés. La première question qu’on peut se poser est la
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suivante : comment peut-on définir de façon appropriée la notion de périmètre d’un ensemble
mesurable E ⊂ RN ? Une première idée pourrait être de considérer la mesure de Hausdorff
(N − 1)-dimensionnelle de sa frontière topologique ∂E (qui correspond, pour des ensembles dont
la frontière est suffisamment lisse, à la mesure de surface usuelle). Malheureusement, pour des
ensembles généraux cette notion s’avère ne pas être très appropriée : en effet, considérons les
ensembles

E := {x ∈ R2 | ‖x‖ = 1}, F := E \ ([0, 1]× {0}).

E et F sont égaux presque partout (à moins d’un ensemble négligeable pour la mesure de Le-
besgue), mais H1(∂E) = 2π, tandis que H1(∂F ) = 2π+ 1. Du coup, il est nécessaire d’introduire
la notion de périmètre distributionnel, qui ne présente pas l’inconvenient qu’on vient de décrire,
et qui permet de montrer l’existence de formes optimales pour des problèmes du type

min{P (E) |E ⊂ Ω, |E| = V },

où P (E) est le périmètre distributionnel de E, Ω est un ouvert borné, et la mesure de Lebesgue
|E| de l’ensemble E est fixée.

Le texte de référence sera l’ouvrage de Francesco Maggi, "Sets of finite perimeter and geo-
metric variational problems", paru en 2012. Le stage est accessible aux étudiants qui ont des
connaissances de base en théorie de la mesure.

Encadrant Raphaele Herbin et Thierry Gallouet
Domaine EDP hyperboliques, Schéma Volumes finis,
Bref descriptif Si la question de la modélisation du trafic routier est relativement ancienne
puisque les premiers modèles remontent aux années 1950, elle fait encore aujourd’hui l’objet de
nombreuses études mathématiques théoriques et numériques. Ceci est en particulier dû à la diver-
sité des modèles proposés : échelle de description (microscopique, cinétique ou macroscopique),
lois de comportement des automobilistes (prise en compte d’effets d’inertie, de phénomènes de
retard par exemple).

Nous nous intéresserons spécifiquement aux modèles microscopiques, qui consistent à dé-
crire la position xi(t) et la vitesse vi(t) des voitures individuellement ; et macroscopiques, qui
consistent à décrire le trafic au travers de la densité ρ et de la vitesse moyenne v vue comme des
fonctions du temps et de l’espace. Dans un modèle microscopique simple, appelé couramment
Follow The Leader (FTL), on exprime la vitesse d

dtxi = vi comme une fonction donnée (crois-
sante) de la distance à la voiture précédente vi = vmicro(xi−xi−1). La vitesse du leader v1 étant
prescrite, on obtient un système d’équations différentielles couplées. Dans une approche alterna-
tive macroscopique développée par Lighthill, Whitham et Richards (modèle LWR), le principe
physique de conservation locale de densité de voitures ρ donne l’équation aux dérivées partielles :
∂tρ+∂x(ρvmacro) = 0 où la vitesse est une fonction donnée (décroissante) de la densité vmacro(ρ).

Le but de ce stage est d’étudier par des outils théoriques et numériques le lien entre les
deux modèles FTL et LWR, question qui n’a obtenu de réponse rigoureuse que seulement très
récemment (Di Francesco, Rosini 2015). Il sera d’abord question de se familiariser avec les modèles
de lois de conservation, autour des notions de solutions faibles (i.e. peu régulières) entropiques
et des schémas numériques classiques permettant d’approcher les solutions de ces équations. On
comparera ensuite ces solutions numériques à celles du modèle microscopique FTL et abordera
enfin les outils théoriques permettant de justifier les solutions faibles entropiques du modèle LWR
comme limites (quand le nombre de voitures tend vers l’infini) de solutions du modèle discret
FTL.
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On pourra envisager des extensions à d’autres modèles courants en trafic routier avec par exemple
prise en compte d’effets d’inertie (modèles dits d’ordre deux en temps où la vitesse n’est plus
une fonction donnée de la distance ou de la densité) ou avec des lois de comportement des
automobilistes plus complexes.

Encadrant Sylvie Monniaux
Domaine Analyse fonctionnelle
Bref descriptif. Le sujet s’intéresse aux traces sur le bord de de fonctions définies sur un
ouvert de Rn . Une première approche sera d’étudier les espaces de Hardy au bord du disque
unité. On s’intéressera à cette occasion à la transformation de Hilbert qui est un opérateur défini
par une intégrale singulière. La généralisation à des dimensions supérieures à 2 fait intervenir
les opérateurs de Riesz. Tout cela est bien connu dans le cas d’ouverts réguliers. Un problème
plus diffcile est de déterminer le comportement de fonctions vectorielles dans des ouverts peu
réguliers (à coins, comme par exemple une pizza dont on aurait mangé une part). Des problèmes
intéressants n’ont encore pas de solution, cela pourrait déboucher sur des sujets de recherche
modernes et actifs.

Encadrant Florence Hubert
Domaine EDP, Equations de fragmentation, Maths bio
Bref descriptif Nous nous intéressons à un modèle EDP simple décrivant la dynamique des
microtubules (éléments du cyto-squelette de la cellule). Dans le modèle, les microtubules s’al-
longent (phase de polymérisation), et de temps en temps une partie se détache et se désagrège
brutalement (phénomène dit de ’catastrophe’). Une question importante est de comprendre s’il
peut exister un comportement périodique, c’est à dire tel que la taille moyenne des microtubules
serait une fonction périodique du temps, ou si le système se stabilise. Comprendre le compor-
tement asymptotique de la solution d’une EDP générale reste un problème souvent difficile ma-
thématiquement. Le but de ce stage de recherche est de commencer par essayer de comprendre
l’asymptotique du système sur un modèle simplifié. En fonction des goûts de l’étudiant, le projet
pourra se poursuivre ou bien par l’étude du modèle complet, en regardant les applications en
biologie, ou bien par une étude purement théorique des équations de fragmentation.

Encadrant Michel Mehrenberger
Domaine Analyse numérique, calcul scietifique
Bref descriptif Résolution numérique de lois de conservation dans un domaine carré en utili-
sant une méthode alignée. On considère un phénomène 2D anisotrope : la solution est supposée
avoir peu de variation dans une certaine direction fixe. Typiquement cela peut correspondre à
imposer un champ magnétique fort dans une certaine direction (application au projet ITER,
CEA Cadarache) qui va avoir tendance à allonger les structures le long de ce champ magnétique.
La "méthode alignée" consiste à tirer profit de cette anisotropie pour avoir un résultat précis à
moindre coût (par rapport aux méthodes numériques standard qui n’utilisent pas cette infor-
mation d’anisotropie). Le stage a deux volets possibles permettant à l’étudiant.e d’approfondir
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l’aspect calcul scientifique ou l’aspect analyse numérique (ou les deux). Volet calcul scientifique :
résoudre les équations d’Euler qui régissent le mouvement de fluides avec cette méthode. Volet
analyse numérique : extension de résultats existants de stabilité (ou instabilité !) de la méthode
pour le transport linéaire à coefficients constants ∂tf + a∂xf + b∂yf = 0.

Encadrant Alexandre Gaudillière
Domaine Probabilités, Signal
Forêts aléatoires, ondelettes et réseaux. La plupart des algorithmes de compression, comme
ceux qui ont donné lieu aux formats .jpeg ou .mp3, tirent profit de la structure extrêmement
régulière du support des données. Une image numérique est la donnée d’une couleur pour chaque
pixel qui la compose, dans ce cas le support de l’image est la famille de ces pixels, et, sauf
sur les bords et dans les coins, chaque pixel a exactement quatre voisins bien rangés, un au-
dessus, un au-dessous, un à droite et un à gauche. Un son numérisé est quant à lui décomposé
en fractions de millisecondes, chacune suivie et précédée, sauf au début et à la fin, d’un autre
segment temporel élémentaire. Mais les données sur réseau sont attachées aux nœuds de ce réseau
et ces nœuds sont rarement si bien ordonnés. Pensons par exemple aux données de consommation
et production d’énergie en chaque nœud du réseau électrique national, foyer, centrale, fabrique,
. . . Le problème se pose aussi pour les données définies sur des surfaces non planes : toute mesure
faite à la surface du cerveau, le cortex, tout plein de circonvolutions, est naturellement définie
sur une triangulation de celui-ci — on modélise la surface par une famille de petits triangles
s’ajustant arête par arête — chaque triangle pouvant avoir une forme et une taille différentes de
celles de ses voisins.

Nous allons développer un algorithme de compression pour ce type de données. Ce n’est en fait
pas tant le problème de compression en lui-même qui nous intéresse, que l’idée selon laquelle, si
nous sommes capables de construire un bon algorithme de compression pour ce type de données,
alors il est probable que nous ayons en main un bon outil pour l’analyse de ce type de données.
En effet, les algorithmes de compression développés à la fin du vingtième siècle pour les signaux
musicaux sont en grande partie construits sur la contrepartie mathématique des concepts à la
base de la compression musicale des siècles précédents : c’est en écrivant des partitions que l’on
compressait la musique, et les outils mathématiques des algorithmes de compression moderne
fonctionnent de façon assez similaire à la notation musicale. Une ondelette, par exemple, c’est
assez proche d’une version mathématique d’une note de musique assez simple. C’est parce qu’on
avait les bons outils d’analyse qu’on a pu faire des algorithmes de compression efficaces, et c’est
pourquoi on est en droit de penser que le développement d’algorithmes de compression pour
les signaux sur réseau — problème assez facile à poser — pourrait ouvrir des voies d’analyse
pertinente de tel signaux — problème très ouvert et difficile à poser. En imagerie médicale par
exemple, on sait que certaines maladies sont corrélées avec des cortex trop peu ou trop plissés,
mais on manque d’outils pour quantifier ces notions de trop et trop peu.

Nous nous inspirerons très fortement, pour développer notre algorithme, d’algorithmes clas-
siques à base d’ondelettes pour la compression des données sur support régulier. Un premier
problème que nous rencontrerons pour construire nos ondelettes sera proche d’un problème af-
fronté par la Convention lorsqu’il s’est agit, en 1790, de choisir les préfectures qui devait mailler
un territoire national irrégulier, fait de routes inégales, de cours d’eau, de plaines et de montagnes.
On a fait en sorte qu’en tout point du territoire il soit possible de joindre la préfecture la plus
proche en moins d’une journée de cheval. Remplaçant les chevaux par un promeneur aléatoire sur
notre réseau, nous aborderons le problème avec un regard probabiliste et trouverons une façon
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de construire un ensemble aléatoire de nœuds, bien répartis dans un réseau quelconque, à partir
desquels nous construirons nos ondelettes. Nous utiliserons pour ce faire certaines identités qui
remontent à des travaux de Kirchoff et qui montrent que l’on peut compter les arbres couvrants
un réseau (c’est-à-dire les sous-graphes connexes sans cycles obtenus à partir du réseau en lui
retirant des arêtes) en calculant certains déterminants. L’entrée en scène de notre promeneur
aléatoire non seulement permettra de démontrer ces identités reliant la combinatoire (le nombre
d’arbres couvrants) à l’algèbre linéaire et à la géométrie (le calcul de déterminant), elle nous
permettra aussi d’élaborer le language et les mathématiques nécessaires à la construction de nos
ondelettes à base de forêts aléatoires.

La preuve de ces identités, une première étude des promenades et forêts aléatoires ainsi que
la résolution concrète, c’est-à-dire codage compris, du « problème de la Convention » suffira à
la première année de travail. Les connaissances requises se limitent à la maîtrise des opérations
matricielles de première et deuxième année de licence. On passera ensuite à la construction
de l’algorithme de compression proprement dit et on étudiera, sur des données concrètes, les
instruments d’analyse qu’il fournit. On pourra enfin explorer plus en profondeur les liens qui
unissent forêts aléatoires et propriétés vibratoires des réseaux.
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