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Résumé

Les premiers cas de COVID-19 ont été détectés en France le 24 janvier 2020. Le nombre

de tests de dépistage effectués et la méthodologie employée pour cibler les patients testés ne
permettent pas de connaitre avec certitude le nombre réel d’infectés et le taux de mortalité liés
a I’épidémie. Nous développons dans cette note une approche dite ‘mécanistico-statistique’ cou-
plant un modele d’équations différentielles de type SIR décrivant la dynamique épidémiologique
non observée, un modele probabiliste décrivant le processus de recensement des infectés et une
méthode statistique d’inférence. L’objectif de ce modele n’est pas de faire de la prédiction mais
d’estimer le nombre réel de personnes infectées par le COVID-19 en France durant la période
d’observation et d’en déduire le taux de mortalité associé a 1’épidémie.
Principauzx résultats. Nous trouvons ainsi que le nombre réel d’infectés en France est bien
supérieur aux observations, avec un facteur x15 (IC 95% 4-33), et que le taux de mortalité au
17 mars est de 5.2/1000 (IC 95% 1.5/1000 — 11.7/1000). Nous trouvons un Ry de 4.8, valeur
élevée liée en partie a la période d’excrétion virale que nous supposons de 20 jours.

Abstract

The first cases of COVID-19 in France were detected on January 24, 2020. The number
of screening tests carried out and the methodology used to target the patients tested do not
allow for a direct computation of the real number of cases and the mortality rate. In this
report, we develop a 'mechanistic-statistical’ approach coupling a SIR ODE model describing
the unobserved epidemiological dynamics, a probabilistic model describing the data acquisition
process and a statistical inference method. The objective of this model is not to make forecasts
but to estimate the real number of people infected with COVID-19 during the observation
window in France and to deduce the mortality rate associated with the epidemic.
Main results. The actual number of infected cases in France is probably much higher than
the observations : we find here a factor x15 (95%-CI : 1.5 — 11.7), which leads to a 5.2/1000
mortality rate (95%-CI : 1.5/1000 — 11.7/1000) at the end of the observation period. We find
a Rp of 4.8, a high value which may be linked to the long viral shedding period of 20 days.

Introduction. L’épidémie de COVID-19 a démarré en décembre 2019 dans la province du Hubei,
en Chine. Depuis, la maladie s’est propagée a travers le monde, avec notamment des premiers cas
détectés en France le 24 janvier 2020, pour atteindre le stade de pandémie le 11 mars selon ’'OMS.
Le nombre de tests de dépistage effectués est tres variable suivant les pays (36 747 en France vs
268212 en Corée du Sud au 15 mars 2020, Sources : Santé Publique France et Korean Center for
Disease Control) et ne permet pas de connaitre avec certitude le nombre réel d’infectés dans la



population. Le nombre de déces liés au COVID-19 est connu avec plus de certitude ; néanmoins, le
nombre de malades n’étant pas connu, il ne permet pas de calculer directement un taux de mortalité.
En utilisant les données disponibles en France et en Corée du Sud, nos objectifs sont :

- d’estimer le nombre de personnes infectées par le COVID-19 en France;

- de déduire de ce nombre le taux de mortalité associé ;

- de calculer les parameétres d’'un modele de type SIR associés a ’épidémie en France;

- de comparer les résultats en France et en Corée du Sud.

Pour cela, nous nous basons sur un formalisme mécanistico-statistique. Ce formalisme permet de
coupler un modele mécaniste, ici un modele d’équation différentielle ordinaire (EDO) de type SIR, et
des données incertaines, non exhaustives et non nécessairement commensurables avec les solutions
de PEDO. Ce formalisme, que nous avons popularisé en I'appliquant a des invasions biologiques
(Roques et al., 2011; Roques et Bonnefon, 2016; Abboud et al., 2019), repose sur un couplage entre
(1) le modele mécaniste, (2) un modele probabiliste décrivant le processus de collecte des données
conditionnellement & la solution du modele mécaniste et (3) une méthode statistique d’estimation
des parametres du modele mécaniste.

Données. Nous disposons de données de dépistages du COVID-19 en France et en Corée du
Sud sur une période allant du 22 janvier 2020 au 17 mars 2020. Ces données décrivent le nombre
de cas positifs et de déces, jour par jour (source : Johns Hopkins University Center for Systems
Science and Engineering, https ://github.com/CSSEGISandData/COVID-19). Le nombre de tests
effectués, qui lui n’est connu qu’a partir du 22 février (Sources : Santé publique France et Korean
Center for Disease Control). Certaines données (cas positifs, déces) n’étant pas fiables (exemple :
0 nouveaux cas détectés en France le 12 mars 2020), nous avons procédé a un lissage des données
via une moyenne mobile sur 5 jours.

Modéle mécaniste. Les modeles SIR sont les modeles d’EDO (équations différentielles ordi-
naires) les plus classiques en épidémiologie. Ce sont des modeles dits compartimentaux, qui divisent
la population en plusieurs classes : les susceptibles, les infectés et les résistants (immunisés reco-
vered en anglais), d’ott le nom de modele SIR. L’exemple le plus simple ne tient pas compte de la
démographie des S :

r__

S = NSI,

r_ QY ey (1)
I'= S S1-51,

R =pI,

avec N = S + I + R la population totale, qui reste constante au cours du temps. On néglige
donc ici 'impact du compartiment D (nombre de morts) sur la dynamique du systéeme SIR. Ce
compartiment D vérifie :

D'(t) =~(t) 1, (2)
équation qui nous permettra de calculer le taux de mortalité. La donnée initiale N — 1 = S(to)
est la population totale Francgaise ou Sud-Coréenne (respectivement 67 - 10° et 52 - 10° habitants),
I(tg) =1, R(tg) = 0. Le temps tg correspond au démarrage du modele SIR, et devrait approcher la
date d’introduction de I’épidémie.

On note que I'(t) = 81 (Ry S/N — 1), avec Ry = a/ le taux de reproduction de base (Murray,
2002). Si Ry < 1, on voit que I’ < 0, donc I’épidémie ne peut se développer. Si Rg > 1, le nombre
d’infectés croit tant que Ry S > N =S+ 1+ R.



Le modele (1) peut étre résolu analytiquement, via un changement de variable de temps, impli-
quant une intégration numérique. Nous lui préférons ici une résolution numérique standard, via le
solveur Matlab® ode23s.

Modgle d’observation. Notons d; le nombre de cas testés positifs le jour ¢t. On suppose que ces
incréments suivent une loi binomiale, conditionnellement au nombre de tests et & I(t), S(¢) :

Op ~ Bi(ng, pt), (3)

ou n; correspond au nombre de tests effectués le jour ¢ et p; la probabilité d’étre testé positif dans
cet échantillon. La population testée est constituée d’une fraction des infectés et d’une fraction des
sains : ny = 71(t) I(t) + m2(t) S(¢). Ainsi,

_ n(t)I(1) ()
PEZ I + ) S I8 + ke SE)

avec k = 7o(t)/71(t), la probabilité relative de subir un test pour un individu de type S vs un
individu de type I (probabilité d’étre testé conditionnellement au fait d’étre S/probabilité d’étre
testé conditionnellement au fait d’étre I'). Nous faisons ’hypotheése que le ratio x ne dépend pas de
t au début de I’épidémie c’est-a-dire sur la période que nous utilisons pour estimer les parametres
du modele). Le nombre journalier de morts causées par le pathogene considéré est supposé connu
de fagon exacte.

Inférence. En se basant sur Zhou et al. (2020) (période médiane d’excrétion virale de 20 jours), on
fixe 8 = 1/20. Les parametres restant & estimer sont «, la date d’introduction tg, et k. En supposant
les incréments o indépendants conditionnellement au processus, et n; connu, la vraisemblance £
associée aux parametres correspond A la probabilité d’obtenir les observations (ici la famille {4;})
conditionnellement aux parametres. En utilisant le modele (3), nous obtenons :

ty

L(a,to,k) == P({0i}|a,to, k) = [ #pf‘ (1 — )"0,
t—t; (5t)'(nt — 5t)'
avec t; la date de la premiere observation et ¢ la date de la derniere observation. Dans ’expression
ci-dessus, la dépendance a a, tg, k se fait via p;.

Pour calculer lestimateur de maximum de vraisemblance (i.e., les parametres qui maximisent £),
nous utilisons une méthode de minimisation sous contrainte de type BFGS, appliquée a — In(L), via
Poutil Matlab® fmincon. Afin de trouver un maximum global de £, nous appliquons cette méthode
a partir de valeurs initiales de «, tg, k tirées aléatoirement (uniformément) dans les intervalles sui-
vants :

a € (0,1),
to € (1,30), (du ler au 30 janvier) (4)
k€ (0,1).

Pour chaque pays, I’algorithme de minimisation est appliqué a 2000 valeurs initiales des parametres.



La distribution a posterior: des parametres (a, to, k) est calculée avec une méthode bayesienne,
en utilisant des distributions a priori uniformes dans les intervalles (4). Cette distribution a poste-
riori correspond a la distribution des parametres conditionnellement aux observations :

E(OZ, th K/) 7T(Oé, tO) KJ)
C 5

P(a,to,m|{5t}) =

ou (e, tg, k) correspond & la distribution a priori des parameétres (donc uniforme) et C' est une
constante de normalisation indépendante des parametres. Le calcul numérique de la distribution a
posteriori (uniquement en France) est effectué avec un algorithme de Metropolis-Hastings (MCMC),
en utilisant 5 chaines indépendantes, avec chacune 10° itérations, et une valeur de départ proche
du MLE.

Sauf mention contraire, les données &, utilisées pour calculer le MLE et la distribution a posterior:
sont celles correspondant a la période allant du 29 février au 17 mars.

Résultats.
Adéquation aux données. On note a*, tf, k* l'estimateur du maximum de vraisemblance (MLE),
et I*(t), S*(t) les solutions du systeme (1) associées a ces valeurs. En France, nous obtenons
(a*,t5, k*) = (0.24,26,2-107%). L’espérance des observations associées a ce MLE est n; p} (espérance
d’une binomiale) avec
. _ I"(t)
PeZ T ) + e ST ()

La Fig. 1 compare cette espérance avec les observations. En France, nous obtenons une bonne
adéquation entre n;p; et les données. En Corée du Sud, en revanche, 'écart aux données est
important : le modele SIR, qui conduit & une trajectoire exponentielle de I au début de I’épidémie,
ne permet pas de décrire la dynamique. En utilisant des données obtenues & un stade plus précoce
en Corée du Sud, 'adéquation aux données est meilleure (Fig. 2). Le MLE correspondant est :
(a*,ts, k%) = (0.13,3,3 - 1077).

Distribution des paramétres. Les distributions jointes des trois couples de parametres (o, k), (o, @)
et (to, k) en France sont présentées dans I’Appendice A (Fig. 6). On note que des distributions tres
différentes de la distribution a priori uniforme. Néanmoins, les distributions de ¢y et x sont assez
étalées. La distribution jointe de (to, ), présentée dans I’Appendice A montre une corrélation entre
to et k. Ainsi, en supposant ty compris entre le 13 et le 30 janvier, nous diminuons l'incertitude sur
K.

La Fig. 3 présente la distribution a posteriori marginale du taux de reproduction de base Ry.
La valeur de Ry correspondant au MLE en France est R§ = a*/8 = 4.8. Un calcul similaire en
Corée du Sud, sur la base des données utilisées dans la Fig. 2 donne R = 2.6.

Nombre réel d’infectés. En utilisant la distribution a posteriori des parametres du modele, avec la
contrainte ‘ty compris entre le 13 et le 30 janvier’ nous en déduisons une distribution des infectés.
Cette distribution est représentée en Fig. 4. Nous en déduisons les ratios suivants entre le nombre
d’infectés réels et observations, I(t)/%6; (avec £4; le cumul des infectés observés au temps t).
Ainsi, en France, le rapport entre nombre d’infectés réels et observations est de 15 (intervalle &
95% : (4,33)).
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FIGURE 1 — Espérance du nombre de cas détectés associés au MLE vs nombre de cas
réellement détectés (total des cas). La courbe rouge correspond a 'espérance n; py, les croix
bleues aux données (cumul des ¢;). Calcul du MLE basé sur les données du 29 février au 17 mars.
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FIGURE 2 — Espérance du nombre de cas détéctés associés au MLE en Corée du Sud. La
courbe rouge correspond & 'espérance n; p;, les croix bleues aux données (cumul des d;). Calcul du
MLE basé sur les données du 18 février au 4 mars.
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FIGURE 3 — Distribution a posteriori du taux de reproduction de base R; en France.



FIGURE 4 — Distribution du nombre d’infectés en France. Ligne pleine : valeur moyenne
obtenue a partir de la distribution a posteriori des parametres. Courbes pointillées : quantiles 0.025
et 0.975.

0.025

0.02 VRN

0.015 I~ 4 N s .

Death rate

FIGURE 5 — Evolution du taux de mortalité en France. Ligne pleine : valeur moyenne obtenue
a partir de la distribution a posteriori des parametres. Courbes pointillées : quantiles 0.025 et 0.975.

Taux de mortalité réel. Le taux de mortalité correspond & la fraction des infectés qui meurent, soit
~¥(t)/(v(t)+5). Le terme ~(t) est calculé via la formule (2) et les données de mortalité. Nous obtenons
ainsi, au 17 mars un taux de mortalité en France de 5.2/1000 (IC-95% :(1.5/1000,11.7/1000)). La
dynamique temporelle du taux de mortalité est représentée en Fig. 5.

Discussion.

Sur le nombre d’infectés et le taux de mortalité. Le nombre réel d’individus infectés en France est
sans doute bien supérieur aux observations (nous trouvons ici un facteur x16), ce qui conduit & un
taux de mortalité plus faible que celui calculé sur la base des cas observés. Néanmoins, si le virus
devait contaminer 80% de la population Frangaise (Ferguson et al., 2020), le nombre total de déces
a déplorer en 'absence de variation du taux de mortalité (augmentation induite par exemple par
une saturation des structures hospitalieres, ou diminution liée a une meilleure prise en charge des



malades) serait de 277000 (IC-95% :(81 000,629 000)). Cette estimation pourra étre corroborée
ou invalidée lorsque 80% de la population aura été infectée, y compris sur plusieurs années, en
supposant qu’un individu infecté est définitivement immunisé. Il est & noter que les mesures de
confinement ou de distanciation sociale peuvent décroitre a la fois le pourcentage d’individus infectés
dans la population et le degré de saturation des structures hospitalieres.

Sur les différences entre France et Corée du Sud. Le modele SIR mécanistico-statistique décrit bien
les données francgaise, mais mal I'infléchissement rapide du nombre de cas observé en Corée du Sud. Si
I’on se base uniquement sur la premiere phase de 1’épidémie en Corée du Sud, la valeur du Ry estimé
reste deux fois plus faible, indiquant une dynamique épidémique d’emblée plus lente. La différence
entre la dynamique prédite par le modele SIR et les données Sud-Coréennes est probablement liée
a une gestion différente de 1’épidémie en Corée, ayant un fort impact sur la dynamique épidémique
(dépistage, tragage, isolement plus importants en Corée du Sud).

Sur la valeur de Ry. La valeur de Ry obtenue en Corée du Sud est cohérente avec les estimations
admises pour le COVID-19 (2.0,2.6) ; voir Ferguson et al. (2020). La distribution estimée en France
est donc étonnamment élevée. Cette différence pourrait étre due a une définition différente du Ry
suivant le type de modele utilisé pour le calculer. Une estimation directe, par une méthode non-
mécaniste, des parametres (p, tp) d’'un modele de la forme 5 = e (=10 donne to = 30 (30 janvier)
et p = 0.19. Avec le modele SIR, I'(t) = I (« — ) pour des temps petits (S = N), ce qui conduit &
un taux de croissance égal & p &~ o — f3, et une valeur de o = 0.24, soit Ry = 4.8 ce qui est cohérent
avec la distribution présentée en Fig. 3. Notons que 5 = 1/20 correspond a la période médiane
d’excrétion virale de 20 jours décrite par Zhou et al. (2020). Une période plus courte conduirait &
une valeur de Ry plus faible.

Sur Uincertitude liée aux données. L’incertitude sur le nombre d’infectés et donc le taux de mortalité
sont tres élevés. Il faut donc interpréter avec prudence les prédictions pouvant étre faites sur la base
des données dont nous disposons actuellement en France. Nous ne proposons ici pas de prédiction,
la dynamique future sera fortement influencée par les mesures de confinement qui seront prises.

Sur les hypothéses sous-jacentes au modele. Les données utilisées contiennent une information li-
mitée, d’autant plus que la période d’observation considérée est courte et correspond a la phase
initiale de la dynamique épidémique qui peut étre fortement influencée par des évenements discrets.
Cette limite nous a conduit a utiliser un modele particulierement parcimonieux afin d’éviter des
problemes d’identifiabilité des parametres. Les hypotheses sous-jacentes au modele sont donc rela-
tivement simples et les résultats doivent étre interprétés au regard de ces hypotheses. Ainsi, la date
d’introduction tg doit étre vue comme une date équivalente d’introduction dans une dynamique
ol une seule introduction serait déterminante pour le déclenchement de I’épidémie et les autres
introductions (antérieures ou postérieures) auraient un effet non significatif sur la dynamique.

Appendice A : distributions jointes a posteriori Les distributions a posteriori jointes des
trois couples de parametres sont présentées en Fig. 6.
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FIGURE 7 — Estimateurs du maximum de vraisemblance. Calculés a partir de 2000 valeurs
initiales des parametres, pour les données francaises.

Appendice B : estimateurs du maximum de vraisemblance Les calculs du MLE se font
en utilisant une méthode de minimisation sous contrainte de type BFGS, appliquée & —In(L), via
Poutil Matlab® fmincon, & partir de 2000 valeurs initiales des parameétres. Cela conduit & 2000
valeurs de (a*,t§, k*). Nous n’avons retenu que la valeur conduisant & la plus forte vraisemblance.
Les autres valeurs sont présentées en Fig. 7.
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