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Résumé

Les premiers cas de COVID-19 ont été détectés en France le 24 janvier 2020. Le nombre
de tests de dépistage effectués et la méthodologie employée pour cibler les patients testés ne
permettent pas de connâıtre avec certitude le nombre réel d’infectés et le taux de mortalité liés
à l’épidémie. Nous développons dans cette note une approche dite ‘mécanistico-statistique’ cou-
plant un modèle d’équations différentielles de type SIR décrivant la dynamique épidémiologique
non observée, un modèle probabiliste décrivant le processus de recensement des infectés et une
méthode statistique d’inférence. L’objectif de ce modèle n’est pas de faire de la prédiction mais
d’estimer le nombre réel de personnes infectées par le COVID-19 en France durant la période
d’observation et d’en déduire le taux de mortalité associé à l’épidémie.
Principaux résultats. Nous trouvons ainsi que le nombre réel d’infectés en France est bien
supérieur aux observations, avec un facteur ×15 (IC 95% 4-33), et que le taux de mortalité au
17 mars est de 5.2/1000 (IC 95% 1.5/1000 − 11.7/1000). Nous trouvons un R0 de 4.8, valeur
élevée liée en partie à la période d’excrétion virale que nous supposons de 20 jours.

Abstract
The first cases of COVID-19 in France were detected on January 24, 2020. The number

of screening tests carried out and the methodology used to target the patients tested do not
allow for a direct computation of the real number of cases and the mortality rate. In this
report, we develop a ’mechanistic-statistical’ approach coupling a SIR ODE model describing
the unobserved epidemiological dynamics, a probabilistic model describing the data acquisition
process and a statistical inference method. The objective of this model is not to make forecasts
but to estimate the real number of people infected with COVID-19 during the observation
window in France and to deduce the mortality rate associated with the epidemic.
Main results. The actual number of infected cases in France is probably much higher than
the observations : we find here a factor ×15 (95%-CI : 1.5 − 11.7), which leads to a 5.2/1000
mortality rate (95%-CI : 1.5/1000 − 11.7/1000) at the end of the observation period. We find
a R0 of 4.8, a high value which may be linked to the long viral shedding period of 20 days.

Introduction. L’épidémie de COVID-19 a démarré en décembre 2019 dans la province du Hubei,
en Chine. Depuis, la maladie s’est propagée à travers le monde, avec notamment des premiers cas
détectés en France le 24 janvier 2020, pour atteindre le stade de pandémie le 11 mars selon l’OMS.
Le nombre de tests de dépistage effectués est très variable suivant les pays (36 747 en France vs
268 212 en Corée du Sud au 15 mars 2020, Sources : Santé Publique France et Korean Center for
Disease Control) et ne permet pas de connâıtre avec certitude le nombre réel d’infectés dans la
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population. Le nombre de décès liés au COVID-19 est connu avec plus de certitude ; néanmoins, le
nombre de malades n’étant pas connu, il ne permet pas de calculer directement un taux de mortalité.
En utilisant les données disponibles en France et en Corée du Sud, nos objectifs sont :

- d’estimer le nombre de personnes infectées par le COVID-19 en France ;
- de déduire de ce nombre le taux de mortalité associé ;
- de calculer les paramètres d’un modèle de type SIR associés à l’épidémie en France ;
- de comparer les résultats en France et en Corée du Sud.

Pour cela, nous nous basons sur un formalisme mécanistico-statistique. Ce formalisme permet de
coupler un modèle mécaniste, ici un modèle d’équation différentielle ordinaire (EDO) de type SIR, et
des données incertaines, non exhaustives et non nécessairement commensurables avec les solutions
de l’EDO. Ce formalisme, que nous avons popularisé en l’appliquant à des invasions biologiques
(Roques et al., 2011; Roques et Bonnefon, 2016; Abboud et al., 2019), repose sur un couplage entre
(1) le modèle mécaniste, (2) un modèle probabiliste décrivant le processus de collecte des données
conditionnellement à la solution du modèle mécaniste et (3) une méthode statistique d’estimation
des paramètres du modèle mécaniste.

Données. Nous disposons de données de dépistages du COVID-19 en France et en Corée du
Sud sur une période allant du 22 janvier 2020 au 17 mars 2020. Ces données décrivent le nombre
de cas positifs et de décès, jour par jour (source : Johns Hopkins University Center for Systems
Science and Engineering, https ://github.com/CSSEGISandData/COVID-19). Le nombre de tests
effectués, qui lui n’est connu qu’à partir du 22 février (Sources : Santé publique France et Korean
Center for Disease Control). Certaines données (cas positifs, décès) n’étant pas fiables (exemple :
0 nouveaux cas détectés en France le 12 mars 2020), nous avons procédé à un lissage des données
via une moyenne mobile sur 5 jours.

Modèle mécaniste. Les modèles SIR sont les modèles d’EDO (équations différentielles ordi-
naires) les plus classiques en épidémiologie. Ce sont des modèles dits compartimentaux, qui divisent
la population en plusieurs classes : les susceptibles, les infectés et les résistants (immunisés reco-
vered en anglais), d’où le nom de modèle SIR. L’exemple le plus simple ne tient pas compte de la
démographie des S : 

S′ = − α
N
S I,

I ′ =
α

N
S I − β I,

R′ = β I,

(1)

avec N = S + I + R la population totale, qui reste constante au cours du temps. On néglige
donc ici l’impact du compartiment D (nombre de morts) sur la dynamique du système SIR. Ce
compartiment D vérifie :

D′(t) = γ(t) I, (2)

équation qui nous permettra de calculer le taux de mortalité. La donnée initiale N − 1 = S(t0)
est la population totale Française ou Sud-Coréenne (respectivement 67 · 106 et 52 · 106 habitants),
I(t0) = 1, R(t0) = 0. Le temps t0 correspond au démarrage du modèle SIR, et devrait approcher la
date d’introduction de l’épidémie.

On note que I ′(t) = β I (R0 S/N − 1), avec R0 = α/β le taux de reproduction de base (Murray,
2002). Si R0 < 1, on voit que I ′ < 0, donc l’épidémie ne peut se développer. Si R0 > 1, le nombre
d’infectés crôıt tant que R0 S > N = S + I +R.
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Le modèle (1) peut être résolu analytiquement, via un changement de variable de temps, impli-
quant une intégration numérique. Nous lui préférons ici une résolution numérique standard, via le
solveur Matlab® ode23s.

Modèle d’observation. Notons δ̂t le nombre de cas testés positifs le jour t. On suppose que ces
incréments suivent une loi binomiale, conditionnellement au nombre de tests et à I(t), S(t) :

δ̂t ∼ Bi(nt, pt), (3)

où nt correspond au nombre de tests effectués le jour t et pt la probabilité d’être testé positif dans
cet échantillon. La population testée est constituée d’une fraction des infectés et d’une fraction des
sains : nt = τ1(t) I(t) + τ2(t)S(t). Ainsi,

pt =
τ1(t) I(t)

τ1(t) I(t) + τ2(t)S(t)
=

I(t)

I(t) + κt S(t)
,

avec κ := τ2(t)/τ1(t), la probabilité relative de subir un test pour un individu de type S vs un
individu de type I (probabilité d’être testé conditionnellement au fait d’être S/probabilité d’être
testé conditionnellement au fait d’être I). Nous faisons l’hypothèse que le ratio κ ne dépend pas de
t au début de l’épidémie c’est-à-dire sur la période que nous utilisons pour estimer les paramètres
du modèle). Le nombre journalier de morts causées par le pathogène considéré est supposé connu
de façon exacte.

Inférence. En se basant sur Zhou et al. (2020) (période médiane d’excrétion virale de 20 jours), on
fixe β = 1/20. Les paramètres restant à estimer sont α, la date d’introduction t0, et κ. En supposant

les incréments δ̂t indépendants conditionnellement au processus, et nt connu, la vraisemblance L
associée aux paramètres correspond à la probabilité d’obtenir les observations (ici la famille {δ̂t})
conditionnellement aux paramètres. En utilisant le modèle (3), nous obtenons :

L(α, t0, κ) := P ({δ̂t}|α, t0, κ) =

tf∏
t=ti

nt!

(δ̂t)!(nt − δ̂t)!
pδ̂tt (1− pt)nt−δ̂t ,

avec ti la date de la première observation et tf la date de la dernière observation. Dans l’expression
ci-dessus, la dépendance à α, t0, κ se fait via pt.

Pour calculer l’estimateur de maximum de vraisemblance (i.e., les paramètres qui maximisent L),
nous utilisons une méthode de minimisation sous contrainte de type BFGS, appliquée à − ln(L), via
l’outil Matlab® fmincon. Afin de trouver un maximum global de L, nous appliquons cette méthode
à partir de valeurs initiales de α, t0, κ tirées aléatoirement (uniformément) dans les intervalles sui-
vants :  α ∈ (0, 1),

t0 ∈ (1, 30), (du 1er au 30 janvier)
κ ∈ (0, 1).

(4)

Pour chaque pays, l’algorithme de minimisation est appliqué à 2000 valeurs initiales des paramètres.

3



La distribution a posteriori des paramètres (α, t0, κ) est calculée avec une méthode bayesienne,
en utilisant des distributions a priori uniformes dans les intervalles (4). Cette distribution a poste-
riori correspond à la distribution des paramètres conditionnellement aux observations :

P (α, t0, κ|{δ̂t}) =
L(α, t0, κ)π(α, t0, κ)

C
,

où π(α, t0, κ) correspond à la distribution a priori des paramètres (donc uniforme) et C est une
constante de normalisation indépendante des paramètres. Le calcul numérique de la distribution a
posteriori (uniquement en France) est effectué avec un algorithme de Metropolis-Hastings (MCMC),
en utilisant 5 châınes indépendantes, avec chacune 106 itérations, et une valeur de départ proche
du MLE.

Sauf mention contraire, les données δ̂t utilisées pour calculer le MLE et la distribution a posteriori
sont celles correspondant à la période allant du 29 février au 17 mars.

Résultats.
Adéquation aux données. On note α∗, t∗0, κ∗ l’estimateur du maximum de vraisemblance (MLE),
et I∗(t), S∗(t) les solutions du système (1) associées à ces valeurs. En France, nous obtenons
(α∗, t∗0, κ

∗) = (0.24, 26, 2·10−4). L’espérance des observations associées à ce MLE est nt p
∗
t (espérance

d’une binomiale) avec

p∗t =
I∗(t)

I∗(t) + κ∗ S∗(t)
.

La Fig. 1 compare cette espérance avec les observations. En France, nous obtenons une bonne
adéquation entre nt p

∗
t et les données. En Corée du Sud, en revanche, l’écart aux données est

important : le modèle SIR, qui conduit à une trajectoire exponentielle de I au début de l’épidémie,
ne permet pas de décrire la dynamique. En utilisant des données obtenues à un stade plus précoce
en Corée du Sud, l’adéquation aux données est meilleure (Fig. 2). Le MLE correspondant est :
(α∗, t∗0, κ

∗) = (0.13, 3, 3 · 10−5).

Distribution des paramètres. Les distributions jointes des trois couples de paramètres (α, κ), (t0, α)
et (t0, κ) en France sont présentées dans l’Appendice A (Fig. 6). On note que des distributions très
différentes de la distribution a priori uniforme. Néanmoins, les distributions de t0 et κ sont assez
étalées. La distribution jointe de (t0, κ), présentée dans l’Appendice A montre une corrélation entre
t0 et κ. Ainsi, en supposant t0 compris entre le 13 et le 30 janvier, nous diminuons l’incertitude sur
κ.

La Fig. 3 présente la distribution a posteriori marginale du taux de reproduction de base R0.
La valeur de R0 correspondant au MLE en France est R∗0 = α∗/β = 4.8. Un calcul similaire en
Corée du Sud, sur la base des données utilisées dans la Fig. 2 donne R∗0 = 2.6.

Nombre réel d’infectés. En utilisant la distribution a posteriori des paramètres du modèle, avec la
contrainte ‘t0 compris entre le 13 et le 30 janvier’ nous en déduisons une distribution des infectés.
Cette distribution est représentée en Fig. 4. Nous en déduisons les ratios suivants entre le nombre
d’infectés réels et observations, I(t)/Σδ̂t (avec Σδ̂t le cumul des infectés observés au temps t).
Ainsi, en France, le rapport entre nombre d’infectés réels et observations est de 15 (intervalle à
95% : (4, 33)).
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(a) France

(b) Corée du Sud

Figure 1 – Espérance du nombre de cas détectés associés au MLE vs nombre de cas
réellement détectés (total des cas). La courbe rouge correspond à l’espérance nt p

∗
t , les croix

bleues aux données (cumul des δ̂t). Calcul du MLE basé sur les données du 29 février au 17 mars.
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(a) Corée du Sud

Figure 2 – Espérance du nombre de cas détéctés associés au MLE en Corée du Sud. La
courbe rouge correspond à l’espérance nt p

∗
t , les croix bleues aux données (cumul des δ̂t). Calcul du

MLE basé sur les données du 18 février au 4 mars.

(a) France

Figure 3 – Distribution a posteriori du taux de reproduction de base R0 en France.
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Figure 4 – Distribution du nombre d’infectés en France. Ligne pleine : valeur moyenne
obtenue à partir de la distribution a posteriori des paramètres. Courbes pointillées : quantiles 0.025
et 0.975.

Figure 5 – Evolution du taux de mortalité en France. Ligne pleine : valeur moyenne obtenue
à partir de la distribution a posteriori des paramètres. Courbes pointillées : quantiles 0.025 et 0.975.

Taux de mortalité réel. Le taux de mortalité correspond à la fraction des infectés qui meurent, soit
γ(t)/(γ(t)+β). Le terme γ(t) est calculé via la formule (2) et les données de mortalité. Nous obtenons
ainsi, au 17 mars un taux de mortalité en France de 5.2/1000 (IC-95% :(1.5/1000, 11.7/1000)). La
dynamique temporelle du taux de mortalité est représentée en Fig. 5.

Discussion.
Sur le nombre d’infectés et le taux de mortalité. Le nombre réel d’individus infectés en France est
sans doute bien supérieur aux observations (nous trouvons ici un facteur ×16), ce qui conduit à un
taux de mortalité plus faible que celui calculé sur la base des cas observés. Néanmoins, si le virus
devait contaminer 80% de la population Française (Ferguson et al., 2020), le nombre total de décès
à déplorer en l’absence de variation du taux de mortalité (augmentation induite par exemple par
une saturation des structures hospitalières, ou diminution liée à une meilleure prise en charge des
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malades) serait de 277 000 (IC-95% :(81 000,629 000)). Cette estimation pourra être corroborée
ou invalidée lorsque 80% de la population aura été infectée, y compris sur plusieurs années, en
supposant qu’un individu infecté est définitivement immunisé. Il est à noter que les mesures de
confinement ou de distanciation sociale peuvent décrôıtre à la fois le pourcentage d’individus infectés
dans la population et le degré de saturation des structures hospitalières.

Sur les différences entre France et Corée du Sud. Le modèle SIR mécanistico-statistique décrit bien
les données française, mais mal l’infléchissement rapide du nombre de cas observé en Corée du Sud. Si
l’on se base uniquement sur la première phase de l’épidémie en Corée du Sud, la valeur du R0 estimé
reste deux fois plus faible, indiquant une dynamique épidémique d’emblée plus lente. La différence
entre la dynamique prédite par le modèle SIR et les données Sud-Coréennes est probablement liée
à une gestion différente de l’épidémie en Corée, ayant un fort impact sur la dynamique épidémique
(dépistage, traçage, isolement plus importants en Corée du Sud).

Sur la valeur de R0. La valeur de R0 obtenue en Corée du Sud est cohérente avec les estimations
admises pour le COVID-19 (2.0,2.6) ; voir Ferguson et al. (2020). La distribution estimée en France
est donc étonnamment élevée. Cette différence pourrait être due à une définition différente du R0

suivant le type de modèle utilisé pour le calculer. Une estimation directe, par une méthode non-
mécaniste, des paramètres (ρ, t0) d’un modèle de la forme δ̂t = eρ (t−t0) donne t0 = 30 (30 janvier)
et ρ = 0.19. Avec le modèle SIR, I ′(t) ≈ I (α− β) pour des temps petits (S ≈ N), ce qui conduit à
un taux de croissance égal à ρ ≈ α− β, et une valeur de α ≈ 0.24, soit R0 = 4.8 ce qui est cohérent
avec la distribution présentée en Fig. 3. Notons que β = 1/20 correspond à la période médiane
d’excrétion virale de 20 jours décrite par Zhou et al. (2020). Une période plus courte conduirait à
une valeur de R0 plus faible.

Sur l’incertitude liée aux données. L’incertitude sur le nombre d’infectés et donc le taux de mortalité
sont très élevés. Il faut donc interpréter avec prudence les prédictions pouvant être faites sur la base
des données dont nous disposons actuellement en France. Nous ne proposons ici pas de prédiction,
la dynamique future sera fortement influencée par les mesures de confinement qui seront prises.

Sur les hypothèses sous-jacentes au modèle. Les données utilisées contiennent une information li-
mitée, d’autant plus que la période d’observation considérée est courte et correspond à la phase
initiale de la dynamique épidémique qui peut être fortement influencée par des évènements discrets.
Cette limite nous a conduit à utiliser un modèle particulièrement parcimonieux afin d’éviter des
problèmes d’identifiabilité des paramètres. Les hypothèses sous-jacentes au modèle sont donc rela-
tivement simples et les résultats doivent être interprétés au regard de ces hypothèses. Ainsi, la date
d’introduction t0 doit être vue comme une date équivalente d’introduction dans une dynamique
où une seule introduction serait déterminante pour le déclenchement de l’épidémie et les autres
introductions (antérieures ou postérieures) auraient un effet non significatif sur la dynamique.

Appendice A : distributions jointes a posteriori Les distributions a posteriori jointes des
trois couples de paramètres sont présentées en Fig. 6.
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Figure 6 – Distributions jointes a posteriori des paramètres (α, κ), (t0, α) et (t0, κ) en
France.
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Figure 7 – Estimateurs du maximum de vraisemblance. Calculés à partir de 2000 valeurs
initiales des paramètres, pour les données françaises.

Appendice B : estimateurs du maximum de vraisemblance Les calculs du MLE se font
en utilisant une méthode de minimisation sous contrainte de type BFGS, appliquée à − ln(L), via
l’outil Matlab® fmincon, à partir de 2000 valeurs initiales des paramètres. Cela conduit à 2000
valeurs de (α∗, t∗0, κ

∗). Nous n’avons retenu que la valeur conduisant à la plus forte vraisemblance.
Les autres valeurs sont présentées en Fig. 7.
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