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Abstract The classical models of epidemics dynamics by Ross and McKendrick
have to be revisited in order to incorporate elements coming from the demography
(fecundity, mortality and migration) both of host and vector populations and from
the diffusion and mutation of infectious agents. The classical approach is indeed
dealing with populations supposed to be constant during the epidemic wave, but the
presently observed pandemics show duration of their spread during years imposing
to take into account the host and vector population changes as well as the transient
or permanent migration and diffusion of hosts (susceptible or infected), as well as
vectors and infectious agents. Two examples are presented, one concerning the
malaria in Mali and the other the plague at the middle-age.
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1 Introduction

Major advances in epidemics modelling have been done recently by introducing
demographic aspects (i.e. consideration of host and vector populations whose global
size changes during both epidemic and endemic histories) as well as spatial aspects
about host, vector or infectious agent spread or genetic change (Gaudart et al. 2010).
Mathematical tools corresponding to these improvements have been recently
introduced making the classical models more realistic, hence more convenient for
prediction and anticipation (like vaccination or other measures of public health
limiting the contagion). As examples of application, the dynamics of two infectious
diseases will be studied: the malaria endemics in the south of Mali, and a well-
known historic plague epidemics, the Black Death (1347–1352), which occurred at
the Middle Age and whose demographic and socio-economic consequences were
dramatic: about 25 million deaths in Europe, and 25 million in Asia (Prentice and
Rahalison 2007).

Despite remaining simple, the models presented in this paper account qualita-
tively for the morphology of the endemic spatial distribution and of the epidemic
front waves. Perspectives will be drawn concerning present epidemic risks, in which
a model like those well retro-predicting the Black Death episode could be ‘‘mutatis
mutandis’’ useful to predict the dynamical behavior of future epidemics.

2 Classical Epidemiology: The Ross-McKendrick Model

After the first historical model by Bernoulli (Bernoulli 1760; Zeeman 1993; Dietz
and Heesterbeek 2000, 2002) proposed for explaining the small pox dynamics,
many discussions occurred about the efficacy of firstly the inoculation and secondly
the vaccination (d’Alembert 1761; Murray 1763; L’Épine 1764; Lambert 1772;
May 1770; Trembley 1796). In the model princeps, the population is divided into
susceptibles (not yet been infected) and immunes (immunized for the rest of their
life after one infection), and the two corresponding variables are u(a), the
probability for a newborn individual of being susceptible and alive at age a, and
w(a), the probability of being immune and alive at age a. Ross (1916), McKendrick
(1925), Kermack and McKendrick (1932, 1933) proposed a model called
Susceptible-Infectives-Recovered with immunity (SIR) model, with equations:

dS

dt
¼ dSþ dI þ ðdþ cÞR& bSI & dS

dI

dt
¼ bSI & ðdþ mÞI

dR

dt
¼ mI & ðdþ cÞR;

ð1Þ

where S (resp. I, R) denotes the size of Susceptible (Infective, Recovered) popu-
lation with S ? I ? R = N, b (resp. d, c, m) being the contagion (resp. death/birth,
loss of resistance, immunization) rate (Fig. 1) (May and Anderson 1984). The
epidemic parameter R0 = bN/(m ? d) is the mean number of secondary infecteds by
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one primary infective and predicts, if it is greater than 1, the occurrence of an
epidemic wave. By defining age classes denoted Si, Ii and Ri (i = 1, …, n) in each
subpopulation of S, I and R, we have at any stationary state (S*, I*, R*):

u'ðiÞ ¼ S'i
S'1
; v'ðiÞ ¼ I'i

I'1
;w'ðiÞ ¼ R'i

R'1
ð2Þ

The relationships (2) between the probabilities for a newborn individual of being
alive and either susceptible, infected or immune at age i make the link between the
Bernoulli and the Ross-McKendrick models, but the weakness of the latter still
resides in many insufficiencies and approximations:

• when the population sizes of either susceptibles or infectives tend to be very
large, the quadratic term SI has to be replaced by a Michaelian saturation term
SI/((k ? S)(k0 ? I))

• the immunized infectives or healthy carriers are neglected
• the total population size is supposed to be constant, the fecondity just equalling the

natural mortality. The Bernoulli model taken implicitly into account the fecundity,
and explicitly the natural mortality. The model by d’Alembert improved the
Bernoulli’s one by distinguishing the specific mortality due to the infectious
disease from the natural one, being more widely applicable than the model by
Bernoulli which was restricted to immunizing infections. In d’Alembert’s method

Fig. 1 Picture of D. Bernoulli
(top left); interaction digraphs of
the Ross-McKendrick model
with 1 (top right) and extended
with 3 (bottom) age classes, with
identical bi’s and ci’s and no
fecundity in elderly classes S3

and I3
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the only task was to calculate the survival function after eliminating a particular
cause of death (the infectious disease), but the Bernoulli’s approach provided
much more insight for a mechanistic interpretation of infectious disease data

• variables and parameters do not depend on space (no migration nor population
displacement)

• parameters do not depend on time (no genetic adaptation of infectious agent or
human population, even very slow compared to the fast dynamics of epidemics).

We will now improve the Ross-McKendrick model by trying to partly
compensate these defects. We will first introduce the age classes into the host
population to account for its growth, the space dependence to account for the host
and vector population migration, and eventually propose to take into account the
genetic changes in all concerned populations before presenting examples of
application and perspectives.

3 Introduction of Demographic Dynamics

3.1 Introduction of Age Classes

By introducing age classes, we add new demographic parameters as the fecundity
rate fi, equal to the mean number of offsprings a person in age class i is sending in
age class 1 between t and t ? dt, and the survival (resp. death) rate bi (resp. li)
equal to the probability to survive from age i to age i ? 1 (resp. to die at age
i) between t and t ? dt. When the biological age is defined by physiology of cells
and tissues (Demongeot 2009) with the possibility to remain in the same age
between t and t ? dt (despite of the fact that the chronological age is increasing of
dt), then b ? bi ? li \ 1. The equations of the extendend Ross-McKendrick model
correspond to 2 age classes are the following (cf. Fig. 1, by reducing the class
number from 3 to 2):

dS1

dt
¼ &ðb11I1 þ b12I2ÞS1 & b1S1 þ c1I1 þ f S

1 S1

þ f S
2 S2 þ ð1& h1Þf I

1 I1 þ ð1& h2Þf I
2 I2 & l1S1

dS2

dt
¼ &ðb21I1 þ b22I2ÞS2 þ b1S1 þ c2I2 & l2S2

dI1

dt
¼ ðb11I1 þ b12I2ÞS1 & b01I1 & c1I1 þ h1f 1

1 I1 þ h2f 1
2 I2 & l01I1

dI2

dt
¼ ðb21I1 þ b22I2ÞS2 þ b01I1 & c2I2 & l02I2

ð3Þ

Herein l0i incorporates the mortality rate due to the disease, bji is the ‘‘efficient
contagion rate’’ of susceptible Sj by infective Ii, 1/ci is the duration of the infective
stage, fi

z, with i = 1,2 and z = S, I, denote fertility rates satisfying 0 B fi
I B fi

S , and
finally 0 B h1, h2 B 1 are the probabilities of vertical transmission. To be more
precise in introducing the age classes, in particular with the biological age, we have
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before to recall the classical models used for modelling the population growth
(Doliger 2006; Demongeot 2009).

3.2 Leslie Model

The population growth has been modelled by Leslie (Leslie 1945) using the ‘‘age
pyramid’’ vector x(t) = (xi(t))i=1,…,n, where xi(t) represents the size of the age class
i at time t, with i ranging from the birth age 1 to the maximal death age n, whose
discrete dynamics is governed by the matrix equation:

x tð Þ ¼ Lxðt & 1Þ; ð4Þ

where L ¼ lij
! "
¼

f1 f2 f3 . . . . . . fn

b1 0 0 . . . . . . 0
0 b2 0 . . . . . . 0

. . .

. . .
0 0 0 . . . bn&1 0

0

BBBBBB@

1

CCCCCCA
ð5Þ

and where bi = 1 - li B 1, V i = 1, …, n, is the survival probability between ages
i and i ? 1 and fi is the fecundity at age i (i.e. the mean number of offsprings from
an individual at age i).

The dynamical stability for the L2 distance between the stationary age pyramid
w and the current age pyramid is related to jk - k0j, the modulus of the difference
between the dominant and sub-dominant eigenvalues of L, namely k = er and k0

(where r is the Malthusian growth rate), where w is the eigenvector of
L corresponding to k. The dynamical stability for the Kullback distance to the
stationary distribution of the probabilities that the mother of a newborn be in age i,
is related to the population entropy H (Demongeot and Demetrius 1989).

3.3 Usher Model

The possibility to remain in the same biological age (corresponding to an increase of
the longevity) or to pass over a biological age state (corresponding to an
acceleration of ageing) between t and t ? dt has been modelled by Usher (Usher
1969) using the vector x(t), whose discrete dynamics is ruled by the matrix equation:

x tð Þ ¼ Ux t & 1ð Þ; ð6Þ

where U ¼ uij

! "
¼

f1 þ a1 f2 f3 . . . fn&1 fn

b1 a2 0 . . . . . . 0
c1 b2 a3 . . . . . . 0
. . .
0 0 0 . . . an&1 0
0 0 0 . . . bn&1 an

0

BBBBBB@

1

CCCCCCA
ð7Þ

and where ai (respectively bi and ci) is the probability to remain in state
i (respectively to go to state (i ? 1) and (i ? 2)) between times t and t ? 1, with
ai ? bi ? ci = 1 - li B 1, V i = 1,…,n.
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Like in the Leslie model of the previous Section, the dynamical stability for the
L2 distance between the stationary age pyramid w and the current age pyramid is
linked to jk - k0j.

3.4 Mathematical Properties

Let us suppose that the last fecundity parameter fn is strictly positive (which is for
example the case for both host and vector populations, if the last age class keeps at
least one fertile individual), then because the subdiagonal is supposed to be strictly
positive, L and U are irreducible and nonnegative. Then from the Frobenius’
theorem, L and U have a strictly positive, simple dominant eigenvalue k, with an
associated strictly positive eigenvector (stable age pyramid). The population is
constant (resp. in explosion, in extinction) if the Malthusian parameter r satisfies:
r = Logk = 0 (resp.[0,\0). For example, let us consider the model with two age
classes both for hosts and vectors, whose dynamics is driven by Eq. 3 and
interaction graph is given in the case of 3 age classes in Fig. 1. Let us denote
si = kSi and ii = kIi. Various possibilities of demographic evolution and stability of
the endemic state can be observed depending on the set of values fixed for the model
parameters:

(1) f2
S = 499k/100, f2

I = 0.2k, b1 = 98k/96, b01 = k, l1 = l01 = 0, l2 = 49k/
100, l02 = 4k/5, b11 = 4k2/100, c1 = k/5, b22 = b12 = b21 = 0, c2 = 0.
Then, if k = 1, we have:

dS1

dt
¼ ð20& 4S1ÞII=100& 98S1=100þ 499S2=100

dS2

dt
¼ 98S1=100& 49S2=100

dI1

dt
¼ 4I1S1=100& I1=5& 4I1=5þ 0:2I2

dI2

dt
¼ 4II=5& 4I2=5

ð8Þ

The two stationary points are denoted by (s1*, s2*, i1*, i2*) = (0, 0, 0, 0) and
(s1**, s2**, i1**, i2**) = (20, 40, 15, 15) and they are both locally unstable. It is
easily proved by calculating the Jacobian matrix J of the system (8) at the second
endemic state and searching for roots of its characteristic polynomial. For the
second stationary point, we have:

J & kI (

&1:6& k 5 &0:8 0
1 &0:5& k 0 0

0:6 0 &0:2& k 0:2
0 0 0:8 &0:8& k

0

BB@

1

CCA

Its characteristic polynomial P satisfies:
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PðkÞ ¼ ð&0:8& kÞ½ð&0:2& kÞ½ð&0:5& kÞð&1:6& kÞ & 5* & 0:48ð0:5þ kÞ*
& 0:16½ð&0:5& kÞð&1:6& kÞ & 5*

P 0ð Þ[ 0 and Pð1Þ[ 0; then k[ 0

P 1ð Þ\0; then k[ 1

PðkÞ ¼ ð&0:8& kÞ½&k3 þ 1:9k2 þ 4:94kþ 0:6* & 0:16k2 & 0:336kþ 0:672

¼ k4 & 1:1k3 & 3:42k2 & 4:552k& 0:48& 0:16k2 & 0:336kþ 0:672

¼ k4 & 1:1k3 & 3:58k2 & 5:188kþ 0:192

P0ðkÞ ¼ 4k3 & 3:3k2 & 7:16k& 5:188; P00ðkÞ ¼ 12k2 & 6:6k& 7:16;

P000ðkÞ ¼ 24k& 6:6

From the endemic state, the population grows with a Malthusian parameter
greater than 1 (on Fig. 2, the dominant eigenvalue k is greater than 3), then N is not
constant and the Ross-McKendrick framework is no more available.

(2) f2
S = 109k/100; f2

I = 0.2k; b1 = 98k/96; b01 = k; l1 = l01 = 0; l2 = 49k/
100; l02 = 4k/5; b11 = 4k2/100; c1 = k/5; b22 = b12 = b21 = 0; c2 = 0.
Then, if k = 1:

dS1

dt
¼ ð20& 4S1ÞI1=100& 98S1=100þ 109S2=100

dS2

dt
¼ 98S1=100& 49S2=100

dI1

dt
¼ 4S1I1=100& I1=5& 4I1=5þ 0:2I2

dI2

dt
¼ 4I1=5& 4I2=5

ð9Þ

Fig. 2 Graphs of the functions
P(k), P0(k) and P0 0(k)
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The characteristic polynomial P of the endemic state (s1**, s2**, i1**,
i2**) = (20, 40, 2, 2) of the system (9) satisfies:

PðkÞ ¼ ð&0:8& kÞ½ð&1:8& kÞ½ð&0:5& kÞð&1& kÞ & 1* & 0:05ð0:5þ kÞ*
& 0:16½ð&0:5& kÞð&1& kÞ & 1*

Then P(0) \ 0 and P(?) [ 0, ensuring that the dominant eigenvalue k is strictly
positive, and P(1) [ 0, then k\ 1. The endemic state is unstable and all populations
are in extinction.

(3) f2
S = k; f2

I = 3k/4; b1 = b01 = 3k/4; l1 = l01 = 0; l2 = l02 = k; b11 = k2/
4; c1 = k/4; b22 = b12 = b21 = 0; c2 = 0.

Then, if k = 1:

dS1

dt
¼ ð1& S1ÞI1=4& 9S1=16þ S2

dS2

dt
¼ 9S1=16& S2

dI1

dt
¼ S1I1=4& I1=4& 9I1=16þ 3I2=4

dI2

dt
¼ 9I1=16& I2

ð10Þ

The characteristic polynomial P of the endemic state (s1**, s2**, i1**, i2**) = (1/4,
9/64, 0, 0) of the system (10) satisfies:

164PðkÞ ¼ ð&16& 16kÞ½ð&12& 16kÞ½ð&16& 16kÞð&9& 16kÞ & 144*
&108½ð&9& 16kÞð&16& 16kÞ & 144*

Then P(0) = 0, P(?) [ 0 and P(x) [ 0, if x [ 0, ensuring that the dominant
eigenvalue k is equal to 0. All populations are locally stable only in the Lyapunov
sense, but are asymptotically unstable.

(4) f2
S = k/2; f2

I = 0; b1 = b01 = 2k/3; l1 = l01 = 0; l2 = l02 = k; b11 = k2/2;
c1 = k/2; b22 = b12 = b21 = 0; c2 = 0. Then, if k = 1:

dS1

dt
¼ ð1& S1ÞI1=2& S1=3þ S2=2

dS2

dt
¼ S1=3& S2

dI1

dt
¼ S1I1=2& I1=2& I1=3

dI2

dt
¼ I1=3& I2

ð11Þ

The characteristic polynomial P of the endemic state (s1**, s2**, i1**, i2**) = (2/3,
2/9, 2/3, 2/9) of the system (11) satisfies:
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64PðkÞ ¼ ð&6& 6kÞ½ð&216k3 & 408k2 & 294k& 54*
¼ 1296k4 þ 3774k3 þ 4212k2 þ 2088kþ 324

Then P(0) [ 0, P(?) [ 0 and P(x) [ 0, if x [ 0, ensuring that the dominant
eigenvalue k is strictly negative. The endemic state is locally stable.

4 Introduction of a Spatial Dynamics

The introduction of the space in Ross-McKendrick models can be made through
stochastic spatial Markovian or renewal models (Demongeot and Fricot 1986), or
deterministic Partial Differential Equations (PDE) in which the diffusion of hosts or
vectors is modelled by the Laplacian operator D or possibly the d’Alembertian h,
when some sub-populations can present an accelerated ageing (Demongeot 2009).
These models are called SIGR with Diffusion (SIGRD) (de Magny et al. 2005). The
Bankoumana model is a double SIGRD model (Gaudart et al. 2007, 2009, 2010)
whose PDE equations have spatial initial conditions essentially determined by the
spawning zones of mosquitos in backwater places.

These zones are depending on the rainfall, e.g. the spawning places of Anopheles
gambiae—the malaria vector—are located on backwater perimeter, whose length is
equal to 0 in absence of rain (stable dry season), tends to infinity when backwater is
progressively fulfilled by water (fractal transient phase during the season transition)
and diminishes until 2pR, where R is the radius of the final backwater mare (stable
rainy season). During the susceptible host and infective Anopheles spread, the
maximum of contagion is observed on the common zones of least diffusion of both
hosts and vectors, which can be asymptotically confounded: as for the morphogens
interaction in morphogenesis, the common zero-diffusion domain allows a
maximum of contagious contacts between interacting species (Abbas et al. 2009).

During the stable rainy season, taking into account the diffusion of all vector
subpopulations As, Ag and Ai (Anopheles susceptible, infected/non infective and
infective) until the human subpopulations S, G, I and R (susceptible, infective,
infected/non infective and recovered), it is possible to simulate the model and
compare its numerical results to the data recorded on the ground, showing a good fit.
In order to improve this fit, contagion parameters are chosen depending on space,
e.g. maximum in zones where diffusion of infective vectors and hosts (whose
concentration is respectively Ai and G) is minimum and in zones where
concentration of susceptibles (As and S) is maximum ensuring locally a large
coexistence time, hence a high contagion rate between large interacting subpop-
ulations (Dutertre 1976).

In case of isotropic diffusion, the zero Laplacian (or zero curvature or maximal
gradient) lines of the concentration surfaces of the concerned populations become, if
they intersect, a contagion frontier, where hosts, vectors and infectious agents
interact. These lines correspond to regions where the mean Gaussian curvatures on
surfaces of concentration S and Ai, defined respectively by q2S/qx2q2S/qy2 - (q2S/
qxqy)2 and q2Ai/qx2q2Ai/qy2 - (q2Ai/qxqy)2, vanish. Figure 3 shows the possibility of
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such an intersection on only one tangency point or two intersection points (left) and
on whole zero-diffusion curves asymptotically confounded (right) for a convenient
value of the ratio between the diffusion coefficients DS/DAi (Abbas et al. 2009).

5 Biological Age Definition

The discrete Usher matrix Eq. 6 can be replaced by its continuous equivalent
modelling the population growth, e.g. a von Foerster-like partial differential
equations, where rS denotes the biological age shift of an individual susceptible
with respect to its chronological age t:

rSSx a; tð Þ þ St a; tð Þ ¼ &lSS a; tð Þ; ð12Þ

where S(a, t) is the number of susceptibles in biological age a at time t.
If the dependence on the biological age authorizes the ageing acceleration cS of

an individual with respect to its chronological age t, the generalized von Foerster
equation can be used (Demongeot 2009):

rSSx a; tð Þ þhSþ St a; tð Þ ¼ &lSS a; tð Þ; ð13Þ

where the demographic d’Alembertian operator is equal to hS ¼ cSo
2S=oa2 & DN

and where lS is the natural mortality coefficient of the susceptibles (Demetrius
1979; Demongeot 1983; Brouns and Denuit 2001).

The same type of equation can be used for all host and vector population
dynamics. The values of parameters like rS, cS and lS can depend both on space,
biological age and time.

6 Introduction of Saturation Kinetics and Genetic Drifts

As noticed in (Horie et al. 2010), the viral genome is easily mutating and transferring
new genes to both hosts and vectors, these latter being often also hosts and rarely

Fig. 3 Representation of the co-evolution of the zero-diffusion domains for interacting species S (blue)
and Ai (red) in case of isotropic diffusion (left). Asymptotic co-existence of S and Ai on their common
least diffusion domain (right)
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neutral healthy carriers. The vast majority of these new genes apparently do nothing,
but some still produce working proteins or contribute to code for small regulatory
RNAs (siRNAs or miRNAs) or for RNA-binding oligo-peptides, important
traduction factors. It is yet impossible to know what these RNAs, peptides or
proteins exactly do. But our ancestors have domesticated their viral interlopers to act
as partners of our cells (Fig. 4). In the example discovered by (Horie et al. 2010),
bornaviruses have clearly taken part to the evolution of mammals.

Taking into account in the models of viral epidemics these genetic transfer could
allow to explain the apparition of resistances both in hosts and vectors diminishing
their ability to build viral proteins, and also on the viral side, could render explicit
certain strategies for escaping the host immunologic defences (Demongeot et al.
2009; Thuderoz et al. 2010). A way to incorporate this triple win game (wins for
hosts, vectors and also infectious agents which have survived and coexist together
during the evolution) consists in rendering dependent the contagion, fecundity,
longevity and death parameters of both hosts and vectors on the level of contact
represented by the term bSAi. This dependence is supposed to decrease b, r, c and l,
and at the same time increase f: indeed, the largest is the contact number, the most
adapted in terms of low susceptibility, high fecundity and longevity are the
population of hosts and vectors offering to the infectious agent numerous targets to
survive, and to hosts and vectors a way to evolve rapidly in order to increase their
adaptive power. The decreasing functions could be linear between two thresholds,
the upper corresponding to the situation of a new infectious agent whose virulence is
maximal, and the lower to endemics resulting from a long cohabitation between the
infectious disease actors. The advantage for vectors would be for example clear, if
the host disease causes also a disease in the vector, because evolved vectors with
resistance would be healthier and would have an adaptive advantage. The strategy
of infectious agents would be then to evolve around the vector’s and host’s
defences, circumventing and overcoming them (Baum et al. 2004). The observation
in model simulations of a periodic time evolution of the parameter values with the
possibility to randomly reset them at their upper threshold values (representing the

Fig. 4 The triple wins game in
which hosts and vectors use the
viral genome for making evolve
their own genomes, and the
viruses survive thanks to these
latter, which code for their
proteins
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mutation of an ancient virus or the occurrence of a new one) could render the model
more realistic hence more adapted to simulated scenarios for testing public health
policies and anticipating real epidemics or pandemics.

7 Black Death

7.1 Introduction

Plague was considered as endemic in the steppes of Southern-Russia where
Mongols originated (Zhang et al. 2008). Born in the Caspian sea area (probably
triggered by contacts between Mongolian and Genoa sailors and warriors in wars
around 1346), the European epidemic wave went through the mean of Mediter-
ranean routes (Fig. 5). It reached ports like Marseilles in France and Genoa in Italy
at the end of the year 1347. During 5 years it was spread widely in Europe from
these two large commercial cities and come back to the Caspian reservoir. A simple
Susceptibles-Infectives model with Diffusion (SID) explains the essential of the
observed front wave dynamics during years between 1348 and 1350. The model
uses only 3 coefficients: (1) a local viscosity proportional to the altitude, (2) a

Fig. 5 Top left The spread of bubonic plague following see and overland routes (after \http://www.
cosmovisions.com/ChronoPestesMA02.htm[). Top right Observed wave fronts after 1 (red), 2 (blue) and
3 (green) years of spread from the 2 initial entry ports Marseilles and Genoa (after Mocellin-Spicuzza
2002); the black grid corresponds to the collected altitudes. Bottom Simulation of the wave front after 3
(left) and 6 (right) months from the 2 initial entry ports Marseilles and Genoa
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contagion parameter and (3) a death/recovering parameter (representing the future
of infecteds as dead or immunized after being cured of the plague).

7.2 The Raw Data

Data are coming from numerous different sources, like parish, bishop, monastery
and hospital registers, abbey cartularies, town council registers, e.g. riformagioni in
Italy (Carpentier 1993), cemeteries,… For example, a part of data comes from a
monastic order, the Hospitaller Order of St Anthony founded at La Motte (presently
Saint Antoine) in the Dauphiné (France) in 1095 near Grenoble by Gaston du
Dauphiné, whose son was struck by a fungal disease, known in the Middle Ages as
Saint Anthony’s fire (ergotism), caused by a transformation of the grain (often rye)
into enlarged, hard, brown to black spur-like structures that constitute the source of
the drug ergot in flour and causes convulsions often leading to death. The members
of this Order were specialised in curing patients suffering from this disease. The
Order was approved by Pope Urban II during the Council of Clermont in 1095.
Later in 1218, Pope Honorius III permitted the brothers to take the vows of
obedience, poverty and chastity. In the thirteenth century the Order spread over the
whole of Western Europe with about 370 hospitals in the fourteenth century, able to
treat about 4,000 patients. This organization permitted to the order to receive about
1,500 patients suffering of the plague and since 1339 has been in relationship with
the University of Grenoble under the Dauphin Humbert.

The origine of the Black Death epidemics is uncertain (Wheelis 2002). Wars
between Mongols and Chinese contributed to its dissemination in Asia. In 1334, in
the North-Eastern Chinese province of Hopei, the plague was particularly virulent
and killed about 90% of the population—some 5 million people. Then it went in
Europe from east, striking Caucasia and Crimea (Wheelis 2002). In 1346, Tatars
attacked the port of Caffa, presently in Ukraine but belonging at this time to Genoa.
After an agreement between Genoa and Tatars, the conflict ceased and ships from
Caffa transmitted the disease in each ports at which they stop. Hence in 1347, the
Black Death arrived first in Constantinople, then in the Mediterranean trade cities:
Messine in Sicily, and after Genoa (where commercial boats were sent back for a
time) and Marseilles (where boats have been accepted for commercial reasons) at
start of the year 1348.

The diffusion of the plague is probably due to rat infestations and abundant fleas
in trade ships, transmitting plague to city rat populations (Wheelis 2002). From
bubonic plague, the outbreak continuation appears to have been mainly due to the
direct pneumonic transmission. From Marseilles, plague devastated Provence
reaching Avignon—100 km far from Marseilles—in 1 month, respecting the
estimation of the front speed given in (Murray 2002) and went through the Rhône
valley until Paris. Some says the maximal velocity was 75 km a day, i.e. 87 cm/s,
which is notably larger than the estimation of 5 cm/s made in (Murray 2002). This
maximal velocity probably occurred only in zones with diffusion maximum, i.e.
with viscosity minimum, like the Rhône Valley (maximal human density and
commercial transactions). During the next 3 years of the epidemics, it spread
northwards, reaching Norway and crossing to England and from there to Scotland,
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Ireland, Iceland and Greenland. Mortality of the pandemic was terrible: at least 25
million people, that is 25–75% of the European population (Russell 1948) are
estimated to have died, e.g. at Givry in Burgundy for about 1,500 inhabitants, the
parish register shows 649 funerals in 1348, whose 630 from June to September. The
parish having normally only 40 funerals the year, the specific mortality rate due to
plague was equal to (649 - 40)/1,500 = 40.6%. Another example is a sample of
235 deaths from the bishop’s registers of Coventry and Lichfield, the only English
register to list both date of death and date of institution, showing that the Black
Death swept through very rapidly to local areas (Wood 2003).

The influence of climate on the outbreak is controversial. It is likely that a harsh
climate, combined with the poverty, population and war (the Hundred Years’ War),
has been an important risk factor (Zhang et al. 2008). Furthermore, emerging from the
dark ages, overland and see trade routes have been developed and the population
density increased in the cities, favouring epidemics. It is now believed that bubonic
plague (Yersinia pestis) is the infectious agent of the Black Death (Raoult et al. 2000).
Sometime in the past, Yersinia pestis lost a set of genes expressed as adhesins, binding
the bacteria to intestinal crypts (Orent 2001, 2004). Now, by suppressing signals
between immune cells, plague spreads through the lymphatic system, invading organs
such as spleen, lungs, and especially the liver. Bubonic plague is transmitted indirectly
(mainly by flies), has an incubation period of 2–6 days and a mortality rate between 50
and 90% (if untreated). Pulmonary plague can be secondary to a bubonic plague or
primary after direct contamination. Highly contagious, the primary pulmonary plague
occurs from an aerial contage (direct by respiratory droplets) and if no treated the
disease is fatal in most cases. Its incubation period is between 2 and 4 days, with R0
estimated varying between 0.8 and 3, with mean 1.3 (Gani and Leach 2004).

Knowledge about the demographic dynamics needs data about the population
growth in middle-age cities (Renouard 1948; Russell 1972; Mocellin and Experton
1992; Brossollet and Mollaret 1994; Horrox 1994; Mischlewski 1995; Drancourt
et al. 1998; Eckert 2000; Cantor 2001; Wood 2003; Mocellin-Spicuzza 2002; Cohn
2002; Scott and Duncan 2004; Benedictow 2004; Christakos et al. 2005; Kelly
2005; Barry and Gualde 2006) like Florence in Italy, whose population passed from
about 100,000 inhabitants in 1338—90,000 in 1336 for (Villani 2001)—to 50,000 in
1351. Parallelly, during this period of time, between 60 and 70% of Hamburg’s and
Bremen’s population died and in Provence, Dauphiné or Normandy, historians
observed a decrease of 60% of fiscal hearths in French cities of these regions
(cf. http://www.answers.com/topic/ and http://www.io.com/*sjohn/demog.htm). In
some regions, two-thirds of the population were annihilated. About half of Perpi-
gnan’s population died in several months (only two of the eight physicians survived
the plague). England lost 70% of its population, which passed from 7 million to 2
million in 1400. Big European cities ranged from 12,000 to 100,000 people, with
some exceptional cities exceeding this scale. Some historical examples before Black
Death included London (25,000–40,000), Paris (50,000–80,000), Genoa
(75,000–100,000) and Venice (100,000). Moscow in the fifteenth century had only a
population in excess of 200,000! No complete population censuses were taken until
the eighteenth century, thus estimates of population levels are notoriously unreli-
able. Estimated levels vary as a number of ‘‘multiplier’’ factors which often have to
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be taken into account: estimated population density, ages of marriage, and perhaps
most importantly the number of people denoted by a ‘‘hearth’’ in medieval tax
surveys that do provide hard numbers.

7.3 The Model

The Fisher equation (Fisher 1937; Murray 2002) has been firstly used for
representing the evolution of the host and vector sub-populations during the spread
of the Black Death:

oS

ot
¼ kSð1& S=S0Þ þ jo2S=ox2; ð14Þ

where k in the logistic term is the growth rate at the homogeneous limit (S independent
of the space variable x), S0 is a saturation size, and j is the diffusion coefficient (the
inverse of the viscosity). Equation 14 admits propagating wave solutions of the form
S(x, t) = S(x - vfrontt), with vfront&2(jk)1/2 as speed of the front (Murray 2002). The
case of a heterogeneous medium is treated in (Mendez et al. 2003). Murray quoted a
diffusion coefficient j of about 103 m2/s and a reaction (growth) rate of 15 year-1,
corresponding to k*5 10-7 s-1 and giving an estimation for vfront of about 5 cm/s,
i.e. about 1,500 km/year (Brandenburg and Multamaki 2004).

The model used in this paper for modelling the Black Death spread is a SIRD
model as in the Bankoumana study (Gaudart et al. 2007, 2009, 2010), but without
vector terms and has for its reaction term the form of a Lotka-Volterra Ordinary
Differential Equation (ODE) of dimension 3, plus a diffusion term:

dS

dt
¼ eDS& bSI;

dI

dt
¼ eDI þ bSI & cR;

dR

dt
¼ eDRþ cR; ð15Þ

where bSI term comes from the ‘‘law of mass action’’, assuming homogeneous
mixing between susceptibles and infecteds, b is the rate of transition from susceptible
to infected state, calculated per infected and per susceptible, c is the rate of transition
from infected to post-infected state (e.g. death or immunity) per infected person and e
is the diffusion coefficient. By taking the viscosity (inverse of e) proportional to the
altitude, the simulated front waves are more similar to the observed ones (Fig. 5) than
in the previous simulations (Murray 2002). The initial population size of susceptibles
in the main middle age cities has been fixed following the demographic data. The
results of simulations (Fig. 5 bottom) are in agreement with the data observed in the
370 hospitals of the order of St Anthony (Fig. 5 top right). Improvements could come
from considering multiple entrance points (ports like Barcelona reached in June 1348
or La Rochelle, Rouen and Dover reached later in 1348), and taking into account all
the commercial sea (Mediterranean and Atlantic) and overland routes (Fig. 5 top left)
as well as the demography (fecundity and natural mortality, as well as more
sophisticated notions as demographic potential and Hamitonian demographic
energies (Maupertuis 1745, reed. 1965; Thom 1972; Demongeot and Demetrius
1989; Porte 1994; Demongeot et al. 2007a, b; Forest et al. 2007; Glade et al. 2007)).

The present endemic state (Fig. 6) could be explained by a new model taking into
account the air routes (La peste humaine 1997; WHO 1999). Plague is still important
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because it could be considered as a re-emerging disease (Stenseth et al. 2008):
Yersinia pestis still causes several thousand human cases per years and about hundred
human deaths are reported each year. Plague is present in all continents, as human
and enzootic disease, particularly in Africa, North and South America, and Asia
(Prentice and Rahalison 2007). Democratic Republic of the Congo and Madagascar
are particular places, accounting most of the reported cases (Neerinckx et al. 2008).
Most of the present cases correspond to bubonic plague, but outbreaks of pneumonic
plague still occur. Environmental, geographical and social characteristics are
particularly favourable for a broad diffusion of plague in Africa (Neerinckx et al.
2008), in spite of the focal nature of the transmission. Yersinia pestis is also an
attractive agent for bioterrorism (Wheelis 2002; Prentice and Rahalison 2007; Zhang
et al. 2008). Furthermore, climate change might modify the dynamics of plague
transmission and cause outbreaks in endemic regions but also in non-endemic regions
(Raoult et al. 2000; Stenseth et al. 2008). Crisis-management approach is considered
as insufficient (Orent 2001, 2004) and prevention action would be more effective. An
efficient prediction from simulations of a realistic model taking into account the new
aerial routes with minimal viscosity (Khan et al. 2009) could serve this cause.

8 The Malaria in Mali

8.1 Introduction

The malaria is a parasitic infectious disease whose agent belongs to the genus
Plasmodium (essentially P. falciparum). Malaria is carried by the mosquitos of the
genus Anopheles and the vector in Mali is Anopheles funestus or Anopheles gambiae
(Depinay et al. 2004; Huang et al. 2006; Gaudart et al. 2009). Symptoms of malaria
include fever, headache and vomiting, and usually appear between 10 and 15 days
after the mosquito bite. Untreated, malaria becomes life-threatening by disrupting
the blood supply to vital organs. In southwest of Mali in particular in the region near
the river Niger each rainy season triggers annual malaria epidemic. The WHO’s

Fig. 6 World distribution of plague in 1998 (after WHO 1999)
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statistics say malaria accounts for 17% of child deaths in Mali. One in five Malian
children die before their fifth birthday. Of the one to three million people worldwide
who die of malaria every year, 90% live in sub-Saharan Africa. Malaria kills an
African child every 30 s, according to WHO. Of those, several hundred thousand
live in the Sahel region of West Africa, which encompasses Mali, Mauritania,
Niger, Burkina Faso, Chad and parts of Senegal, Togo, Benin and Nigeria. The
Bankoumana village is a locality of Sudanese savannah area in Mali in which the
disease has been carefully studied and recorded since 15 years. At each evaluation
on the ground (each 2 months during the rainy season and each 3 months during the
dry one) a blood sample is collected on each child of the village and the parasitemia
is studied for Plasmodia falciparum, malariae and ovale, as well as the
gametocytemia (for P. falciparum), with Giemsa technique (Doumbo 2005).

8.2 The Model

The model has been drawn in order to take into account the known mechanism of
the disease and to qualitatively fit the empirical observations. The equations are
given in Fig. 7, without age classes for host nor for vector, but with diffusion for
vector (supposed to be much larger than the host diffusion). The contagion
parameters ab and af can be chosen depending on space, in particular a, the mean
bite number per mosquito and per night. During the stable rainy season, taking into
account the diffusion of all vector subpopulations As, Ag and Ai (Anopheles
susceptible, infected/non infective and infective) until the human subpopulations S,
G, I and R (susceptible, infective, infected/non infective and recovered), it is
possible to simulate the model and compare its numerical results to the data
recorded on the ground, showing a good fit. For improving the fit, contagion
parameters have been chosen depending on space, e.g. fixed at a value maximum in

Fig. 7 Interaction graph (top),
and SIGR Diffusion (SIGRD)
Eq. 16 both for hosts and for
vectors (bottom) for the
Bankoumana model
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zones where diffusion of infective vectors and hosts (Ai and G) is minimum, and in
zones where the concentration of susceptibles (As and S) is maximum.

dS

dt
¼ &labSAi þ dR

dI

dt
¼ labSAi & ðg1 þ cÞI þ g2G

dG

dt
¼ g1I & ðg2 þ cÞG

dR

dt
¼ cðI þ GÞ & dR

oAs

ot
¼ DsDAs þ -& a1GAs & nAs

oAg

ot
¼ DgDAg þ a1GAs & ðnþ mÞAg

oAi

ot
¼ DiDAi & nAi þ mAg

ð16Þ

The variables of the Bankoumana model are:

S(t): size of the sub-population of Susceptible hosts
I(t): size of the sub-population of Infected not Infective hosts (positive
parasitemia and negative gametocytemia)
G(t): size of the sub-population of infective hosts by Gametocytes hosts (positive
gametocytemia)
R(t): size of the sub-population of Resistant hosts, i.e. treated and resistant to the
disease, or immunized, died or deplaced
As(t): size of the sub-population of Susceptible Anopheles
Ag(t): size of the sub-population of infected (but not infective) Anopheles by
Gametocytes,
Ai(t): size of the sub-population of Infective Anopheles
N(t): total size of hosts
M(t): total size of Anopheles

The parameters of the Bankoumana model are:

d: rate of immunization loss in host (1/d is the mean duration of the resistance)
g1: rate of gametocytes occurrence in host (1/g1 is the mean duration of the time
interval between the primo-infection and the first appearance of gametocytes in
an infected individual)
g2: rate of gametocytes loss in host
c: rate of resistance occurrence
l: Anophelian density, i.e. Anopheles number per host
a: mosquito bite rate per mosquito and per night (la is called the vector
agressivity)

In the model, a Susceptible can become Plasmodic Infected (non Infective).
A Plasmodic Infected can shift to the Gametocytic state, or recover and acquire an
immunization, or recover without immunization, i.e. become a new susceptible. The
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immunized state can also naturally disappear (e.g. due to an intercurrent disease
paralysing the immune system). The introduction of the space in the model could be
done by using stochastic spatial Markovian or renewal models (Demongeot and
Fricot 1986) or deterministic Partial Differential Equations (PDE). Such models are
of SIGRD type (de Magny et al. 2005).

The Bankoumana model (Fig. 7 bottom, Eq. 16) is a double SIGRD model
(Gaudart et al. 2007, 2009) whose interaction graph (Fig. 7 top) corresponds to PDE
Eq. 16 with spatial initial conditions essentially determined by the spawning zones
in backwater places (Fig. 6 bottom). These zones are depending on the rainfall
hence have a seasonal occurrence (Balenghien et al. 2006; Bicout et al. 2002; Bicout
and Sabatier 2004; Ndiaye et al. 2006; Porphyre et al. 2004): the spawning places of
Anopheles gambiae—one of the malaria vectors—are located on the backwater
perimeter, whose length is equal to 0 in absence of rain (stable dry season), tends to
infinity when backwater holes—puddles or ponds—are progressively fulfilled by
water (fractal transient phase during the season transition) and diminishes until 2pR,
where R is the radius of the final backwater hole (stable rainy season). During the
stable rainy season, taking into account the diffusion of all vector subpopulations As,
Ag and Ai (Anopheles susceptible, infected/non infective and infective) until the
human subpopulations S, G, I and R (susceptible, infective, infected/non infective
and recovered) supposed to be fixed, we can simulate and compare the numerical
results to the data recorded on the ground, showing a good fit (Fig. 8). For

Fig. 8 Results of the SGIRD simulated (top right) and real data (middle right) showing a good fit along a
gradient parallel to Niger river from the southwest backwater zone (bottom) to the village of Bankoumana
(Mali)
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improving this fit, contagion parameters b and f can be chosen depending on space,
e.g. maximum in zones, which constitute overlaps between domains where diffusion
of infective vectors and hosts (Ai and G) is minimum and domains where
concentration of susceptible (As and S) is maximum, ensuring locally a large
coexistence time, hence a high contagion rate between these interacting subpop-
ulations (Abbas et al. 2009).

If we simplify the malaria model (16), by considering only the population of
infected and contagious vectors, we can introduce in the equations a delay h in order
to take into account the long incubation period both in host and vector, due in
particular to host and vector migrations and climatic changes (which explains in part
that malaria is reappearing in south of Europe). In this new model, the variables are
denoted as follows:

S(t) represents the size of the susceptible host population,
I(t) represents the size of the infected but not contagious host population,
G(t) represents the size of the infected and contagious host population,
R(t) represents the size of the resistant host population,
Ai(t) represents the size of the infected and contagious vector population,
VI(t) represents the Normalized Difference Vegetation Index (NDVI), i.e. a
simple numerical indicator coming from remote sensing measurements assessing
whether an observed zone contains live green vegetation or not.

The parameters of the new model are defined as follows:

Parameters Definition

a Mosquito bite rate per mosquito and per night (la is called the vector agressivity)

b Probability for a susceptible human of becoming infected after a single bite

c Rate of resistance occurrence

d Rate of immunization loss in host (1/d is the mean duration of the resistance)

1 Probability for an susceptible Anopheles of becoming infected after a single bite on an
infected human

g1 Rate of gametocytes occurrence in host (1/g1 is the mean duration of the time interval
between the primo-infection and the first appearance of gametocytes in an infected
individual)

g2 Rate of gametocytes loss in host

h Latency period for the normalized vegetation index

l Anophelian density, i.e. Anopheles number per host

t Average duration of the gonotrophic cycle

n Mortality rate of the susceptible Anopheles

s NDVI lowest threshold value conditioning the Anopheles behavior

The transition from susceptible to infected state depends on host (resp. vector)
population size, but also on climatic factors represented by the variable i(t) (resp.
im(t)) in equations (T0):
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dSðtÞ
dt ¼ &iðtÞSðtÞ þ dRðtÞ

dIðtÞ
dt ¼ iðtÞSðtÞ & ðg1 þ cÞIðtÞ þ g2GðtÞ

dGðtÞ
dt ¼ g1IðtÞ & ðg2 þ cÞGðtÞ

dRðtÞ
dt ¼ c½IðtÞ þ GðtÞ* & dRðtÞ

dAiðtÞ
dt ¼ imðtÞ exp &nt

1þv VIðt&hÞ+ sgf VIðt&hÞ

n o
& AiðtÞ

h i
& n

1þv VIðt&hÞ+ sgf VIðt&hÞAiðtÞ

8
>>>>>>><

>>>>>>>:

ð17Þ

with :
iðtÞ ¼ labv VIðt&hÞ+ sgf VIðt & hÞAiðtÞ

imðtÞ ¼ a1½v VIðt&hÞ+ sgf VIðt & hÞ*GðtÞ

(

By denoting
a ¼ lab½v VIðt&hÞ+ sgf VIðt & hÞ*
b ¼ a1½v VIðt&hÞ+ sgf VIðt & hÞ*

(

and D ¼ &n
1þv VIðt&hÞ+ sgf VIðt&hÞ; the

previous equations become the following system:

T1ð Þ ¼

dSðtÞ
dt ¼ &aAiðtÞSðtÞ þ dRðtÞ

dIðtÞ
dt ¼ aAiðtÞSðtÞ & ðg1 þ cÞIðtÞ þ g2GðtÞ

dGðtÞ
dt ¼ g1IðtÞ & ðg2 þ cÞGðtÞ

dRðtÞ
dt ¼ c½IðtÞ þ GðtÞ* & dRðtÞ

dAiðtÞ
dt ¼ bGðtÞ expðDtÞ & AiðtÞ½ * þ DAiðtÞ

8
>>>>>><

>>>>>>:

ð18Þ

The two stationary states of (T1) are the healthy state E0 = (S0, 0, 0, 0, 0)
and the endemic state E* = (S*, I*, G*, R*, Ai*), where: S0 ¼ 1

R0
;

S' ¼ 1

R0 1&
A'

i

exp
&nt

1þv VIðt&hÞ+ sgf VIðt&hÞ

# $

0

@

1

A;

I' ¼ g2þc
g1

G'; G' ¼ lab½v VIðt&hÞ+ sgf VIðt&hÞ*

c g1þg2þc
g1

h i A'i S' and

R' ¼ c
d

g1þg2þc
g1

h i
G'; with R0 ¼

la2bf½v VIðt&hÞ+ sgf VIðt&hÞ*2 exp &nt
1þv VIðt&hÞ+ sgf VIðt&hÞ

# $

n
1þv VIðt&hÞ+ sgf VIðt&hÞc

g1þg2þc
g1

h i

VI(t - h) is supposed to be constant equal to s and D = -n/(1 ? s), when t is
sufficiently large. We can notice that: S0 [ S'. We will now study the stability of
the first steady state E0 by linearizing (T1) and doing the change of variables:
x1(t) = S(t) - S0(t); x2(t) = I(t); x3(t) = G(t); x4(t) = R(t) and x5(t) = Ai(t), we get
the system (T2):

dx=dt ¼

x1
:

x2
:

x3
:

x4
:

x5
:

0

BBBB@

1

CCCCA
¼

0 0 0 d &aS0

0 &ðg1 þ cÞ g2 0 aS0

0 g1 &ðg2 þ cÞ 0 0
0 c c &d 0
0 0 b expðDtÞ 0 &D

0

BBBB@

1

CCCCA

x1

x2

x3

x4

x5

0

BBBB@

1

CCCCA
¼ B1ðxÞ

ð19Þ
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The characteristic polynomial of B1 is given by:

detðB1 & kIÞ ¼

&k 0 0 d &aS0

0 &½kþ ðg1 þ cÞ* g2 0 aS0

0 g1 &½kþ ðg2 þ cÞ* 0 0
0 c c &ðkþ dÞ 0
0 0 b expðDtÞ 0 &ðk& DÞ

%%%%%%%%%%

%%%%%%%%%%

PB1
ðkÞ ¼ kðkþ dÞ

&
&½kþ ðg1 þ cÞ*½kþ ðg2 þ cÞ*ðk& DÞ þ g1g2ðk& DÞ

þ g1abS0 expðDtÞ
'

Hence: PB1
¼ &k5 & Ak4 & ðBþ CÞk3 & ðdBþ DÞk2 & 1

dDk;
where:

A ¼g1 þ g2 þ 2c& Dþ d

B ¼cðg1 þ g2 þ cÞ & Dðg1 þ g2 þ 2cÞ
C ¼dðg1 þ g2 þ 2c& DÞ
D ¼cDðg1 þ g2 þ 2cÞ & g1abS0 expðDtÞ

:

All coefficients of the characteristic polynomial being negative, the largest eigenvalue
is 0 and the Hessian dominant eigenvalue is strictly positive, then E0 is unstable.

For the second steady state E*, after linearizing (T1) and changing variables as
x1(t) = S(t) - S*; x2(t) = I(t) - I*; x3(t) = G(t) - G*; x4(t) = R(t) - R* and
x5(t) = Ai(t) - Ai*, we get the equations (T3):

dx=dt ¼

x1
:

x2
:

x3
:

x4
:

x5
:

0

BBBB@

1

CCCCA

¼

&aA'i 0 0 d &aS'

aA'i &ðg1 þ cÞ g2 0 aS'

0 g1 &ðg2 þ cÞ 0 0
0 c c &d 0
0 0 b½expðDtÞ & A'i * 0 &ðbG' & DÞ

0

BBBB@

1

CCCCA

x1

x2

x3

x4

x5

0

BBBB@

1

CCCCA

¼ B2x

ð20Þ

The characteristic polynomial of B2 is given by:

PB2
ðkÞ¼detðB2&kI5Þ

¼det

&ðkþaA'i Þ 0 0 d &aS'

aA'i &½kþðg1þcÞ* g2 0 aS'

0 g1 &½kþðg2þcÞ* 0 0
0 c c &ðkþdÞ 0
0 0 b½expðDtÞ&A'i * 0 &½kþðbG'&DÞ*

%%%%%%%%%%

%%%%%%%%%%

= K1 ? K2, where:
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K1 ¼

& ðkþ aA'i Þ

&½kþ ðg1 þ cÞ* g2 0 &aS'

g1 &½kþ ðg2 þ cÞ* 0 0

c c &ðkþ dÞ 0

0 b½expðDtÞ & A'i * 0 &½kþ ðbG' & DÞ*

%%%%%%%%%

%%%%%%%%%

K2 ¼ &aA'i

0 0 d &aS'

g1 &½kþ ðg2 þ cÞ* 0 0

c c &ðkþ dÞ 0

0 b½expðDtÞ & A'i * 0 &½kþ ðbG' & DÞ*

%%%%%%%%%

%%%%%%%%%

After some calculations, we get:

K1 ¼ &D0k
5 & D1k

4 & D2k
3 & D3k

2 & D4k& D5; where:

D0 ¼ 1

D1 ¼ g1 þ g2 þ cþ bG' & Dþ aA'i þ d

D2 ¼ ðg1 þ g2 þ cÞðbG' & DÞ þ cðg1 þ g2 þ cþ bG' & DÞ
þ ðaA'i þ dÞðg1 þ g2 þ 2cþ bG' & DÞ þ aA'i d

D3 ¼ cðg1 þ g2 þ cÞðbG' & DÞ & g1abS'½A'i & expðDtÞ*
þ ðaA'i þ dÞ½ðg1 þ g2 þ cÞðbG' & DÞ þ cðg1 þ g2 þ cþ bG' & DÞ*

D4 ¼ ðcaA'i þ cdþ aA'i dÞ½ðg1 þ g2 þ cÞðbG' & DÞ þ g1abS'ðA'i & expðDtÞÞ*
þ aA'i dcðg1 þ g2 þ cþ bG' & DÞ

D5 ¼ aA'i dcðg1 þ g2 þ cÞðbG' & DÞ þ g1a2bA'i S'd½A'i & expðDtÞ*

and K2 ¼ &T0k
2 & T1k& T2 with:

T0 ¼ aA'i dc

T1 ¼ aA'i dcðg1 þ g2 þ cþ bG' & DÞ þ g1a2bA'i S'd½A'i & expðDtÞ*
T2 ¼ aA'i dcðg1 þ g2 þ cÞðbG' & DÞ þ g1a2bA'i S'd½A'i & expðDtÞ*

Then we have:

PB2
ðkÞ ¼ &D0k

5 & D1k
4 & D2k

3 & ðD3 þ T0Þk2 & ðD4 þ T1Þk& ðD5 þ T2Þ
If VI(t - h) is supposed to be constant equal to a large value s, which

corresponds to a saturated contagion from hosts G(t) for a given number of vector
Anopheles, then exp(Dm) is small and all the coefficients of the characteristic
polynomial are strictly negative, which is the necessary condition for the application
of the Routh-Hurwitz criterion; by building the Routh-Hurwitz matrix, all the
elements of its first column are positive, which corresponds to the fact that E* is
locally stable.
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9 Perspectives

The last improvements come from the Mac Donald SI model of malaria spread (Mac
Donald 1957), another extension of the Ross model, which has the following
interaction graph given in Fig. 9 with the equations:

dS1

dt
¼ &b2S1I2=NH þ rI1

dI1

dt
¼ b2S1I2=NH & rI1

dS2

dt
¼ -þ fS2 & b1S2I1=NV & dS2

dI2

dt
¼ fI2 þ kE2 & dI2

dE2

dt
¼ fE2 þ b1S2I1=NV & kE2 & dE2

ð21Þ

where f (resp. d) is the fecundity (resp. death) rate of the vector population (sus-
ceptible, infected and infective vectors being supposed to have the same fecundity
and mortality), b1 (resp. b2) is the host (resp. vector) contagion parameter, NH (resp.
NV) is the host (resp. vector) population size, the ratio m = NV/NH is the vector/host
ratio, k (resp. r) is the vector (resp. host) speed of passage from the infected/not
infective (resp. infected) state to the infective (resp. susceptible) state. If f = d-l
(the fecundity compensating partly the mortality), the value of R0, the mean number
of secondary infected vectors for one infective host, is equal to:

R0 ¼ b1b2kNV=½NHlrðk þ lÞ* ð22Þ
If R0 [ 1, the stationary state (0, 0, 0, 0, 0) is unstable and the endemic stable

stationary state is reached after a transient epidemic wave for the values:

i'1 ¼ I'1=NH ; i'2 ¼ I'2=NV ; e'2 ¼ E'2=NV ;

with i1* = (R0 - 1)/(R0 ? b1/l), i2* = i1*lr/[mb2(1 - i1*)], e2* = i1*(d-f)r/
[kmb2(1 - i1*)].

Fig. 9 Interaction graph of the Mac Donald model
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If d is small, then k/(k ? d)&e-d/k, where 1/k is the mean sojourn time in the
compartment E2 (sporogonic cycle duration) and R0 = [b1b2m/dr]e-d/k.

Let us consider now the Cox model with proportional risk (Cooke and Morales-
Napoles 2006) and suppose that the risk function would be given by h(t,
z) = eqzb(t), where q is a regression parameter and b(t) the baseline risk function.
Then, by denoting u = eqz, the survival function S(t, u) (i.e. the probability to
survive until the age t with a risk u) is given by:

S t; uð Þ ¼ exp &
Z t

0

hðs; zÞds

2

4

3

5 ¼ B tð Þu; ð23Þ

where B tð Þ ¼ exp &
R t

0 b sð Þds
( )

:
In the Mac Donald model, for calculating the survival function S2 of the

subpopulation I2, it is possible to identify z = Log(b1b2m/dr), q = -k/d, t = 1/k,
b(s) = cste = d, B(1/k) = e-d/k and R0 = [b1b2m/dr]e-d/k = exp[Log(b1b2m/dr)]
e-d/k&S2(1/k,(b1b2m/dr)-k/d), if b1b2m/dr is close to 1. If there exist n age classes into
the vector subpopulation E2 whose sojourn times Ti (i = 1, …, n) are independent
random variables related to the survival functions Si, we have:

PðTi [ ti; i ¼ 1; n j uÞ ¼ Pi¼1;n Si ti; uð Þ ¼ Pi¼1;nBi tið Þu ð24Þ
If z is a random variable, then u = eqz is also a random variable and we define the

mean survival function as S(t) = Eu[B(t)u]. If we consider now the Laplace
transform defined by: Eu[e-vu] = exp(-vp) = L(v), where p is a parameter
depending on the probability distribution of u, we can write:

PðTi [ ti; i ¼ 1; n j uÞ ¼ ½expð&Ri¼1;nð&Log½Si tið Þ1=p*Þp ¼ Pi¼1;nLi vð Þ
¼ C S1; . . .; Snð Þ;

ð25Þ

where C is an Archimedean copula (Beaudoin and Lakhal-Chaieb 2008).
By introducing now a demographic dynamics and by using the Archimedean

copula methodology, we can deal with a proportional risk increasing for example
with the biological age (Demongeot 2009). Such an approach would be more
realistic than the Mac Donald’s one by taking into account the resistance of both
vectors and hosts to infectious diseases, which is highly varying between young or
elderly animals and humans; hence, it could be possible to give a better prediction of
the efficacy of public health policies like vector eradication, vaccination, quarantine
or other preventive actions in the different age classes of the populations of vectors
and hosts.

10 Conclusion

We have considered in this paper some natural extensions of the classical Ross-
McKendrick-Mac Donald approaches, in order to account for demographic and
spatial dependencies of the contagion parameters on the host age and on the vector
spread. Two examples have been presented, the first concerning the malaria
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incidence with environmental dependency in Bankoumana, a locality of Sudanese
savannah area in Mali, and the second concerning a retro-prediction of the medieval
Black Death epidemics between 1348 and 1350 in Western Europe. Both examples
show the interest of the introduction of space and age into the classical equations. In
the future, some realistic examples (like Sexually Transmitted Diseases, STD) will
be treated showing also the importance of the demography (the sexual relationships
depending on the age of the partners) and of the socio-geography (conditioning the
sexual behavior). Eventually, based on the knowledge of the new aerial routes
(Khan et al. 2009), the study of the Black Death could also be revisited for the
prediction of new possible plague pandemics from the Central Asia reservoir, with a
viscosity vanishing no more on maritime but on aerial routes.
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55:297–306

Gaudart J, Touré O, Dessay N, Dicko AL, Ranque S, Forest L, Demongeot J, Doumbo OK (2009)
Modelling malaria incidence with environmental dependency in a locality of Sudanese savannah
area, Mali. Malar J 8:61

Gaudart J, Ghassani M, Mintsa J, Waku J, Rachdi M, Doumbo OK, Demongeot J (2010) Demographic
and spatial factors as causes of an epidemic spread, the copule approach. Application to the retro-
prediction of the black death epidemy of 1346. In: IEEE AINA’ 10 & BLSMC’ 10. IEEE Press,
Piscataway, pp 751–758

Glade N, Forest L, Demongeot J (2007) Liénard systems and potential-Hamiltonian decomposition. III
Applications in biology. Comptes Rendus Mathématique 344:253–258
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