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ABSTRACT: We introduce a model aimed at shedding light on the
emergence of territorial behaviors in predators and on the formation
of packs. We consider the situation of predators competing for the same
prey (or spatially distributed resource). We observe that strong compe-
tition between groups of predators leads to the formation of territories.
At the edges of territories, prey concentrate and prosper, leading to a
feedback loop in the population distribution of predators. We focus
our attention on the effects of the segregation of the population of pred-
ators into competing, hostile packs on the overall size of the population
of predators. We present some numerical simulations that allow us to
describe our counterintuitive and most important conclusion: lethal ag-
gressiveness among hostile groups of predators may actually lead to an
increase in their total population.

Keywords: emergence of territoriality, formation of packs, predator-
prey interaction, systems of reaction-diffusion equations, competi-
tion, spatial distribution of populations.

Introduction

A long-standing major problem in ecology is to understand
the emergence of territoriality, its mechanisms, and its eco-
logical implications. A theory on territoriality has to indicate
the impact that this behavior has on the population that
adopts it. A common unifying theory of territoriality may
be difficult (if not impossible) to formulate given the large
variety of environments that host such organisms. This is
confirmed by the simple observation that not all species
are territorial. However, there are specific theories. For in-
stance, it has been argued that some animals settle in familiar
sites to increase the efficiency of food retrieval and decrease
mortality (Johnson and Gaines 1990; Larsen and Boutin
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1994). Other theory views competition for territories as a
regulation mechanism for population density (Wynne-
Edwards 1962) or as motivated by provision and allocation of
resources (Brown 1964; Wilson 1975). Krebs (1971) pointed
out that the creation of buffer zones between different ter-
ritories is also a means to reduce the spread of contagious
diseases.

Brown (1964) has argued that territorial behaviors should
also include aggressiveness among conspecifics and economic
defendability of territory. Aggressive behaviors are favorable if
they help increase the chances of survival and the likelihood of
reproduction. Thus, territories form if they increase the food
availability, the mating probability, or the survival of the animal
or its offspring (Brown 1964). Hixon (1980) argues that terri-
tories should also be defendable in economic terms. That is, the
benefits gained from having a territory should offset the en-
ergy invested in the active defense against invaders.

An extensive ecological literature has focused on how ag-
gressiveness and intra- and interspecific competition can
lead to territoriality without invoking group selection argu-
ments related to fitness or economic defendability. For in-
stance, Okubo et al. (1989) introduced a model of two spa-
tially distributed species that compete for the same given
resource. The aim was to study the invasion of red squirrel
territories in Britain by gray squirrels. In terms of rigorous
mathematical analysis, Dancer and Du (1994) were the first,
to our knowledge, to study the effect of strong competition
between two populations occupying the same region of
space. Particularly relevant for our investigation is the pre-
cise description they derive when the competition parameter
becomes infinite.

The aim of this article is to show, through a relatively
parsimonious mathematical model, that territoriality can
emerge as a simple consequence of strong interference com-
petition between predators. We start by considering an envi-
ronment occupied by prey and predators interacting with
each other. By varying the degree of aggressiveness among
the predators, we see territories being formed spontaneously
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with some specific shapes. Further questions we address here
are whether there is a limit to the number of groups and how
this depends on the parameters and what is the effect on the
overall population size of introducing lethal competition be-
tween rival groups.

Several authors have studied the territorial mechanisms
that characterize specific species, such as wolves and coyotes.
In a seminal work, Lewis and Murray (1993) proposed a
model to describe wolf territories based on the dynamics
of predators interacting with scent marks of the different
predator groups. Their model does not involve competition
between packs but rather avoidance. It takes the locations of
centers of territories, the number of groups, and the total
population of each one of them as given. By introducing a
coupled system of equations to model location, deposition,
and expiration of markings, Lewis and Murray succeeded
in describing the shape of the territories and the disposition
of the markings left by different individuals. In particular,
they managed to describe the emergence of buffer zones that
separate the territories occupied by the groups. Such zones
are observed in nature, and one expects to find more prey
there (Mech 1977, 1994; Mech et al. 1980).

A number of works have further developed this model
(White et al. 1996a; Lewis et al. 1997; Moorcroft et al. 2006;
Hamelin and Lewis 2010; Giuggioli et al. 2011; Potts et al.
2012; Potts and Lewis 2014, 20164, 2016b). A subsequent re-
finement (White et al. 1996b) added a coupling between pred-
ators and prey (in this case, wolves and deer). It assumed that
the deposition of markers by predators is influenced by the
presence of prey and that prey density follows some laws sim-
ilar to the Lotka-Volterra system, but with no feedback on the
population of predators.

Unlike these models, the one we present here does not
take the number of packs, their respective total populations,
or the locations of centers as given. It does not assume a spa-
tial variable like scent marks but rather derives territories
from strong competition. We then find the total populations
as resulting from territory formation and analyze the conse-
quences of the number of packs.

The Model

We consider the spatial distribution of predators and prey as
a key factor. We represent movement in the populations as
resulting from random diffusion through Brownian motion.
We are thus led to a system of reaction-diffusion equations.

From a modeling point of view, we adopt the paradigm
suggested by Volterra (1928) and Lotka (1932) to model
all interactions between groups. The rationale behind the in-
teraction is that, given two populations, the effects of the in-
teraction between the two is proportional to the probability
of such interaction. This translates into quadratic terms in

the differential equations that describe the dynamics of the
groups.

We consider a region (henceforth denoted as R) occupied
by a population of prey, whose density we denote by u, and n
groups of predators, whose densities we denote by w, ..., w,.
All of the parameters introduced are to be considered positive.

Individuals of the population of prey u diffuse in region R,
reproduce and perish, and are hunted by predators. We pro-
pose describing population u by the equation

n
r
o,u - \DAL{' = (7‘ - EU)U —u E piw;.
~ S—— — i=1
rate of local random N
population growth motion intrinsic increase predation

in population

(1a)
Here, D is the diffusion rate of the prey, r is the intrinsic
growth rate, K is the (local) carrying capacity of region R,
and p; are the consumption rates per predator based on a
type I functional response: they describe how predator-prey
encounters (whose probability is proportional to uw;) nega-
tively affects the prey population.

Similarly, predators diffuse, starve in the absence of prey,
hunt prey, and compete. The new feature here lies in the
competition between predators. We distinguish between in-
ternal competition in each group and interference competi-
tion between groups (or packs). By the Lotka-Volterra para-
digm, we assume the former to be proportional to w; and the
latter to be proportional to w,w;. Thus, we represent the dy-
namics of group i by the equation

o, w; — dAw, =
~— ——
rate of local random
population growth ~ motion
(1b)
(=L —aww)w;, + puw, — Bw, E a;w;.
—_——— — Py
g . jFi
mortality and predation
intraspecific competition interference
competition

Here, d, is the diffusion rate of the ith population,  is the loss
(mortality) rate in the absence of prey, p; is again the con-
sumption rate per predator for group i, a; is the competition
term among individuals of the same group, a;; is in general the
competition rate seen as how an encounter with the jth group
negatively affects the ith group, and 3 is the strength of this
competition. In the model we leave open the possibility of co-
efficient a; being different from a;, since predators may have
asymmetric responses to a confrontation (Adams 1990). We
emphasize the dependence of the coefficients on index i to
point out that we can take into consideration different models
at once. Indeed, this system of equations can describe either
groups of conspecifics (e.g., packs of predators) or different
species in competition. The former case corresponds to a sit-

This content downloaded from 181.214.184.240 on January 14, 2019 18:04:38 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



uation in which the coefficients in the system do not depend
on i. Mathematically, this distinction does not affect our anal-
ysis, although the results that we will describe can be used to
draw different conclusions depending on the settings. De-
scriptions and summary of model parameters are provided
in table 1.

Thus, equations (1a) and (1b) represent a system of 1 + n
equations in 1 + n unknowns (u, wy, ..., w,). We complete
the model with nonnegative initial conditions that assign
the initial distributions at time t = 0:

u(x,0) = uy(x) 20, w;(x,0) = wy(x) >0 atanyx e R.
As for the boundary conditions, we consider here the case in
which region R is isolated from the surrounding environ-
ment and there are reflective boundary conditions. In other
words, there is no flux of individuals across the boundary
JOR. Mathematically, this translates into

Vu(x,t) - v=Vw(x,t) - » =0 for any x € R and t >0,

where » is the outward normal vector at the boundary. This
Neumann boundary condition also has the advantage of
minimizing spurious effects of the boundary. We have also
considered other types of boundary conditions (see app. C;
apps. A-G are available online), and we have found that our
results are still valid if region R is sufficiently large.

Model Properties and Results

In this section we discuss the main ecological consequences
that we draw from the model. Here we focus mainly on the
effect of strong competition (large ) among predators and
large carrying capacity of prey. In the appendixes we explore
other dependencies, such as that on the diffusion coefficients
and the carrying capacity. We assume throughout the pre-
sentation of our results that region R can sustain any of
the groups of predators when taken separately, that is, it is
the only group in the region. In the model this translates into
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the assumption Kp; > I;, which we impose for any group i of
predators.

We describe the key mathematical arguments behind
these results for a simplified formulation of the model in
the appendixes. In a separate mathematical article (Beres-
tycki and Zilio 2018), we establish rigorously these results
for the general formulation. The main tools we employ in
our analysis there are existence and long-time behavior
results for solutions of semilinear parabolic equations, a
priori estimates and singular perturbation analysis, free-
boundary techniques, spectral properties, and shape optimi-
zation results. Besides the mathematical proofs, we have car-
ried out several numerical simulations of the model, and we
report here some of the most significant outcomes.

To start with, we observe that standard mathematical
arguments show that the model is well posed—that is, for
any nonnegative initial data (i.e., feasible densities of preda-
tors and prey), there exists a unique solution of system (1a)
and (1b).

Weak versus Strong Interference Competition

The strength of the competition parameter 3 has a strong in-
fluence on the spatial distribution of predators. In particular,
while for small values of 3 the various components of the
predators can overlap, for very large values of 8 we find

w6 w(x,t) > 0 asf — +eo, i #j, (2)

for all +>0 and x € R. The term ww; has two interpre-
tations. First, as in the Lotka-Volterra theory, the quantity
w;(x, t)w;(x, t) is proportional to the probability of individ-
uals from population i encountering individuals from popu-
lation j at location x and time t. Second, the product
w;(x, t)w;(x, t) describes the overlap of the densities. To il-
lustrate this more clearly, let us assume that at location and
time (x, t) we find w;(x, t)w;(x, t) = 0; this then clearly entails
that at least one of the two densities w;(x, t) or w;(x, ) is
equal to zero. That is, the populations do not overlap at (x, t).

Table 1: Short description of the parameters of our model

Parameter Description

i Index corresponding to a particular group/density of predators
R Region/environment occupied by the prey and predators

D Diffusion coefficient of prey u

d Diffusion coefficient of prey w;

r Reproduction rate of the prey

K Prey-carrying capacity (mean) of region R

D Consumption rates per predator based on a type I functional response
I; Loss rate/starvation rate of the predators in the absence of prey
Ay Competition among individuals of the same group of predators
Bay Competition among predators in groups i and j

6 Characteristic size of intergroup competition
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If the carrying capacity of prey is sufficiently large, when
the competition parameter diverges (3 > 1), the solutions
persist and the groups of predators segregate. In the limit
case of infinite competition (8 = +e0), region R is sub-
divided into smaller nonoverlapping regions (the territories).
On each of these subregions only one group of predators is
present. One particular feature of the model is that it gives
a precise description of the location of the boundaries and
the shapes of the different territories, as we discuss later.

Minimal Territory Size and Maximal Number
of Predator Groups

A natural question is whether our model yields quantitative
information on the minimal area of a territory and the max-
imal number of groups that can survive in a given region.
This is made clearer in the extreme case of nonoverlapping
territories, when the strength of competition 3 is infinity.
Under this assumption, we have shown that our model yields
a quantitative estimate of the minimal size of the territories.

PropERTY 1: Minimal territory size. Let TA; be the
area territory occupied by species i in the case of non-
overlapping territories (8 = +o0), such that the ith
territory is surrounded by other territories and does
not touch the boundary of R. Then TA; cannot be
smaller than the threshold mTA; (minimal territory
area) given by

mTA1 = XL)
Kp, — I,

where the numerical constant x is ~18.17.

We can derive this estimate by assuming that the territory
occupied by the group is a disk. Indeed, this is the best
possible shape of a small territory, as the circle minimizes
the perimeter of the territory (where the encounters with
other hostile groups take place) for a fixed area. For this
case, we can compute explicitly the value of the constant
x> which is the value appearing in the above statement.'

Thus, our model predicts a lower bound on the size of
an enclosed territory of a group of predators once the
values of d,, K, p;, and [; are known.

A possible interpretation of this estimate is as follows. The
diffusion coefficient can be viewed as the area covered by a
single individual per unit of time, while the denominator
(Kp; — I;) is the maximal possible growth rate of predators
(again per unit of time). Thus, the minimal territory size cor-
responds to the area explored by a single individual during

1. Mathematically, this is related to the Faber-Krahn inequality. We have
detailed the computations in app. C.

the amount of time necessary to produce an offspring (up
to a multiplicative constant). For instance, this implies that,
in principle, less motile predators could divide a region into
many small territories, whereas a large diffusion coefficient
would allow only for a few larger ones.

In the case where the competition strength parameter 3 is
large but not infinite, the previous estimate is less meaning-
tul, and we would need to specify the meaning of territory
size. Alternatively, in the general case we have derived another
estimate formulated in terms of the maximal number of
groups N .., of predators that can coexist in region R. Here
is the precise statement.

PROPERTY 2: Maximum number of groups. We consider
a flat region R that hosts a population of prey and
some groups of predators that strongly compete be-
tween them (8> 1). The maximum number of
groups N, of predators that can persist in R is al-
ways finite and satisfies

N e £ Lea(R) -max.(Kpi _ li)

47 X d;
— ~—-
geometrical ecological
effect effects

up to small correction terms.

In the precise statement we need to discard some particular
family of nearly extinct solutions that are biologically irrele-
vant. We give a sketch of the proof of this formula in the limit
case of nonoverlapping territories (3 = =+oo) in appendix C.
The proof of this estimate for finite but large 3 is consider-
ably more involved technically, and we have established it
in the mathematical article (Berestycki and Zilio 2018).

At first, we see that the maximal number of groups that can
be hosted in region R grows linearly in the area of region R.
This is sustained by the intuition that a larger region will host a
larger number of groups than a small one. Similarly, we see
that if the carrying capacity (K) or predation efficiency (p;) in-
crease or if the starvation coefficient (I;) or diffusion coefficient
(d;) decrease, then more groups of predators can, in principle,
live in the region. Note that if carrying capacity K of the region
increases, then our upper estimate increases as well. In partic-
ular, we find again that if K is too small, then we may have no
groups of predators or only one group (see app. A).

Aggressiveness and Ecological Consequences

We can now study the impact of strong competition on
the overall population of predators. We fix all of the pa-
rameters of the model but carrying capacity K and take
the competition strength 3 to be very large. We first state
two simple facts: (i) if carrying capacity K is too small,
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then the only equilibria of the model contain at most one
group of predators (see app. A); and (ii) for larger values
of K, there are coexisting solutions, that is, solutions with
more than one group of predators (this is the case of over-
lapping territories of predators).

We now look at the total population of predators that
reside in R, that is,

W = JRZW,-.

We find that, in some situations, aggressiveness generates
a positive feedback in the total size of the predators popula-
tion. This hints at a possible new economic advantage of es-
tablishing a territory.

PropERTY 3: Effects of territoriality on the total pop-
ulation. If competition 8 and carrying capacity K are
sufficiently large, the population of predators is maxi-
mized at an equilibrium that has more than one group
of predators.

We interpret this result as follows. In spite of the lethal com-
petition between different groups, the advantage gain in
terms of increase in the total size of predators population
can offset this loss.

We provide a proof of the previous result in appendix B)
for the case K = +eo. The result holds true even in the case

Predator-Prey Models and Territoriality 000

of a large but finite K, but its proof is mathematically more
delicate and available only in the case of a region R that is
shaped like a rectangle.

In figure 1 we illustrate the previous results with the aid
of some numerical simulations. We have already recalled
that in the model of Dancer and Du (1994) competition
has only negative effects on the population in terms of
the total number of individuals. On the contrary, in the
model of combined dynamics of predators and prey, the
total number of predators in the case of very strong com-
petition (the predators are strongly territorial and very ag-
gressive in the defense) is higher in the case of a division of
the population into two (or more) groups than in the case
in which the territory is occupied by only one group of
noncompeting predators. We can explain this difference
by looking at the shape of the solutions, in particular in
the area close to the interface between two different terri-
tories (see fig. 1). As the two territories separate more and
more (when 3 — +o0), a buffer zone appears between the
two. This buffer zone works as a refuge area for the prey.
There, prey can reproduce more abundantly. As they dif-
fuse, just close to the buffer zone, predators can find much
more food. This feedback loop turns out to have a positive
effect on the total population of predators if the carrying
capacity of prey is large (K > 1).

The symmetric solutions in figure 1 appear to be unsta-
ble in numerical simulations if the length of region R is

25

1.5

Population densities

0.5

0 1 2 3 4 5

Spatial location

Figure 1: Numerical simulations of the model, showing the impact of the competition parameter 3 on the distribution of predators (red) and
prey (blue) with the densities of prey and predators on the vertical axis. In this simulation, we have chosen the following values for the
coefficients: d = D = 1,r = | = 1, K = 1,000, and p = 1. Lighter colors correspond to small values of 8 (from 2), and darker colors cor-
respond to higher values (up to 35). We see that the two groups of predators separate more and more as 3 increases. At the boundaries, the
solution converges to the Lotka-Volterra equilibria u ~ 1, w; = 1, and w; = 0 for j = i. In the buffer zone, the density of prey reaches its
maximum (=~2.4) for 3 = 35 (the largest value of 8 in these simulations). The densities of the predators reach their maximum (~1.3) a little
away from the buffer zone. The figure in dimension 1 illustrates the role of the buffer zones in creating a refuge zone for the prey.
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too small or if the length of region R is too large. In the
former case, perturbations will converge to a solution with
only one density of predators. In the latter case, a pertur-
bation yields a solution that will converge to a nonsym-
metric solution, still with two densities of predators. In
the intermediate range of domains R, these symmetric so-
lutions seem to be stable. The precise thresholds strongly
depend on the values of the parameters, in particular on
the strength of competition §. From a theoretical point
of view, the question of stability is quite challenging,
and very few results are known up to now.

Numerical Simulation for the System of One or
Two Predators in One Dimension

We start by analyzing the behavior of the solutions of the
system of 1 + 2 components—that is, the case of one den-
sity of prey and two of indistinguishable predators—and we
also consider the one-dimensional version of the model in
region (—L, L) with L > 0. The system is described by seven
parameters in addition to the characteristic length of the
domain. However, up to scaling and change of variables,
we can reduce the system so that it involves only four
parameters. This scaled system reads

1
—u’ = 7(1——u—w1 —w2>u
K

—w! = 1(—1+ u— Bwy)w, in R =(—1,1)

—wy = 1(—=1+u—Bw)w, (3)

(here the notation h” stands for spatial derivatives of the sec-
ond order of the function h), where the new effective
coefficients are defined as

_Kp g _gr
=Lh=ep @

This system possesses some obvious constant solutions
whose stability can be inferred by a simple linearization. We
are mostly interested in the solution

1
1——=, =0 5
KW2 ()

(and the one obtained by interchanging w, and w,). This
solution is meaningful only if K > 1 (that is the condition
Kp — 1> 0). It corresponds to the case of an environment oc-
cupied by a population of prey hunted by a unique group of
predators. This solution is stable if 8 > 0, since the predom-
inant predators would defend their environment from exter-
nal competitors. According to our results, for very large K
and (3, the solution with two groups of predators has a larger
total population. We illustrate this result with some numeri-
cal simulations that we report in figure 2. We look at the sym-

metric solution of the limit system that we obtain by letting
both K and 8 go to +oo. This limit system is given by

—u" =71l —w)u

—w! = 1(—1+ uw, in R = (0,1)

w(0) = /(1) = 0,w,(0) = wy(1) = 0.

In the segment (—1,0), (4, w,) satisfies a symmetric system.
Note that the boundary condition is imposed at zero. This
point is the boundary of the territory of w, in the case of seg-
regation. A corresponding system holds for w, in (—1,0).
We have plotted the ratio, with respect to the case of only
one density of predators, of the total population of predators
(top) and prey (bottom) as a function of the remaining free
parameters 7 and . As the graphs show, these ratios are al-
ways greater than 1, but small values of / and large values of 7
do enhance this phenomenon. In particular, for r ~ 3.5 and
I~ 0.1, the ratio for predators is 1.5, meaning that in this
case the total population of predators is 50% higher than
if there was only one group of (noncompeting) predators.

The first plot in figure 2 also shows a striking property of
the model. From equation (4), we see that 7 and [ both depend
linearly on L It follows that by varying L and keeping the
other parameters fixed, we move along lines coming from
the origin in the plane (7, 1). The concavity of the isolines of
the total population of predators implies that there exists a
(unique) length L of the territory that maximizes the total
population of predators (we elaborate more on this in app. D).

We now turn to the study of the dependence in K and S.
For instance, we choose the values 7 = 3.5and [ = 0.1 and
look at the behavior of the solution for large values of the
other two parameters. In figure 3 we have represented again
the ratio of the population in comparison with the reference
case: the nonmonotonic behavior of the solution for small
values of K and {3 is a consequence of the strong diffusivity
of the populations that prevents them from separating. Be-
yond some threshold value, the two groups separate, and
the total population starts to increase as the two groups
sharply segregate.

Numerical Simulation for the System in Two Dimensions

Next we look at the shape of territories as they are predicted
by the model. In figure 4 we represent a solution of the sys-
tem with nine indistinguishable groups of predators and
prey in dimension 2. On the left, we show the cumulative dis-
tribution of predators; on the right, the distribution of prey.
To separate clearly the territories, we have chosen very ag-
gressive predators (8 >> 1). Theoretical results imply that
at the boundary between the territories occupied by w; and
w), the pressure exerted by the two groups is equal and oppo-
site (this translates in the equation a;|d,w;| = a;|d,w;|
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Figure 2: Isolines of the ratio of the total population of predators (top) and prey (bottom) for the solution with two groups to the corresponding
quantity for the solution with only one group. The parameters 7 and I are plotted on the axes. In the predators plot, we have also included some lines
emanating from the origin. These correspond to what happens when we set all of the other parameters in the model, but we vary length L. By the
convexity of the isolines, we can deduce that there exists one value of L that maximizes the total population of predators.

across the boundary between two territories). Moreover, it
can be shown that the lines dividing the different territories
are regular, and when more than two regions meet, the
curves reaching the common boundary point divide the an-
gle into equal parts: in this example the angles are all of 27 /3,
and thus the territories look hexagonal in homogeneous en-
vironments (Grant 1968; Maynard Smith 1974). Prey tend to
accumulate on the buffer zones that are formed at the
boundary of the territories: there predators are fewer than
elsewhere, and prey can reproduce more. Consequently,
the distribution of predators also tends to increase along
the boundary of the territories, since it is there that prey
are more abundant. These two effects combined explain
the augmentation of the total population of predators, even
though the predators are very competitive.

Model with Type II Functional Response

Many of the properties that we have seen for system (1a) and
(1b), which has a type I functional response for predator-
prey interaction, can be extended to models that are more re-

alistic from an ecological point of view. To this end, we have
explored the case of a type II functional response.
The new formulation reads as follows:

AV S
(r K)” ”;1 +p,-T,~uW"
ow; — diAw; = (=L — a;w)w; + l-l—pﬁuwi (6)
- BW,-Z a;w;.

jFi

o,u — DAu =

We have imposed the same zero-flux conditions at the
boundary. Here, the nonnegative parameters T; are the han-
dling time of each group i. Note that the handling times
affect only the interaction of predators and prey.

First of all, the new model is well posed, meaning that
for any nonnegative initial datum, the solution of equation (6)
exists, is unique, is bounded, and is defined for all positive
time. Furthermore, the qualitative description of separation
of territories induced by strong competition 3 > 1 (in par-
ticular eq. [2] and its discussion) also holds in this case.
The analytic techniques to derive these properties are similar.
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Figure 3: Isolines of the ratio of the total population of predators (top) and prey (bottom) in the solution of the model with 7 = 3.51=0.1,
and K and (3 as parameters to the corresponding quantity for the solution with only one group.

However, there are some notable differences between
model (1a) and (1b) and model (5). To gain insight into these
we have analyzed model (6) for different values of the han-
dling times T.. In particular, we have considered the effect
of T; on sizes of territories arising in the limit 3 — +oo.

In the case T; = 0, model (6) is our original model. As
simulations show, if the handling times are all small with re-
spect to the other parameters, the solutions of model (6) are
close to those of model (1a) and (1b). In particular, this
implies that the properties of the original model are also valid
in the presence of positive but small handling times.

For larger values of T, it is known that in space-independent
predator-prey models, a type II functional response gives rise
to an attractive limit cycle instead of an attractive equilibrium.
We have observed in numerical simulations that if competi-
tion @ is sufficiently small, large handling times T; also induce
oscillations in the space-dependent model.

On the other hand, strong competition and territoriality
have a stabilizing effect, in particular through the formation
of buffer zones. Again we have found that if the territories are
sufficiently small and the buffer zones are not too scattered
away from each other, the oscillations induced by large han-
dling times are damped, and the solutions converge to equi-

libria that show similar characteristics to those of model (1b)
and (1b).

Finally, if, on the contrary, territories are large enough, the
damping effect of the buffer zones is not strong enough to
compensate for the oscillations induced by type II functional
responses (see app. G for some simulations on the aspect).

Thus, we have found that there is a remarkable interplay
between the spatial effects of territoriality and dynamics in-
duced by type II functional responses. These new features, as
well as other modifications of the original model, open new
perspectives and deserve more in-depth study.

Discussion

We have proposed a model for the interaction of predators
and prey emphasizing the role of conspecific competition be-
tween predators. We have found that this competition plays
a central role in the formation of territories. Indeed, we have
shown that varying the strength of the competition yields
different territorial behaviors. For small values of 3, the model
describes predators that have weak territorial behavior and
home ranges that overlap extensively (Getty 1981; Stamps
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Figure 4: Shape of the territories predicted by the model in a homogeneous environment. Shown on the left is the distribution of nine groups
of predators, and shown on the right is the corresponding distribution of prey. In the color scale under each plot, darker colors correspond to

lower densities, and brighter colors correspond to higher densities.

1990). For large values of (3, it yields predators with strong
territorial behavior tendencies whose territories have sharp
boundaries (Nursall 1977; Askenmo et al. 1994; Eason et al.
1999). Increasing the strength of competition 3 has two ef-
fects: encounters between groups become less frequent, and
the territories become more distinctly separated.

Unlike some other models of spatially explicit territorial
behaviors (e.g., Lewis and Murray 1993), we have not as-
sumed any mechanisms in the establishment and defense
of territories other than strong interference competition be-
tween groups. Thus, in this context territoriality emerges as a
consequence of interference competition.

We have further analyzed the conditions for such spatial
segregation. It depends on various parameters of the model.
Strong inference competition will not lead to separated ter-
ritories in the case of either (i) small regions or scarce prey
(small carrying capacity K) or (ii) highly motile predators
(large motility d,). On the contrary, when the carrying capac-
ity of prey is sufficiently larger than the abundance of prey
expected at the predator-prey equilibrium, strong competi-
tion leads to territory formation.

Any territory must have a area larger than an explicit
threshold and can support at most a certain maximal num-
ber of groups. In particular we have shown that the maximal
number of groups may increase as the following quantities
increase: the carrying capacity of the environment for the
prey, the predation efficiency, and the available surface. It
decreases when the mobility of predators and the decay rate
of predators in the absence of prey increase. These relation-
ships are reminiscent of some empirical observations. In par-

ticular, since carrying capacity K is a rough upper estimate of
the density of prey, our formula suggests that the size of the
territories is (at most) inversely proportional to the abun-
dance of prey. Hixon (1980) predicted a similar dependence
in time-allocation models. On the empirical side, several ob-
servations report such an inverse proportionality between
territory size and resource/prey abundance. Empirical stud-
ies of ants (Adams 2016), seabirds (Myers et al. 1979), birds
of prey (Temels 1987), river ducks (Ippi et al. 2018), migra-
tory songbirds (Marshall and Cooper 2004), coyotes (Mills
and Knowlton 1991), and African wild dogs (van der Meer
2014) report such inverse proportionality.

Next, we considered the effects on the total size of the pop-
ulation of predators. By analyzing the dependence of the so-
lutions of our model with respect to the different parameters,
we have established that if the prey-carrying capacity is suf-
ficiently large, the total number of predators hosted in a re-
gion is maximized when the predators split into several
highly competing groups. It has been argued (Brown 1964)
that in order for territoriality to emerge, there needs to be ag-
gressiveness between conspecifics and an economic advan-
tage in having divided territories. What we have shown here
is that, under certain conditions, the conspecific aggressive-
ness between groups yields an increase of the total size of prey
population due to buffer zones. This leads to an increase of
the density of predators which in certain parameter regimes
can offset the losses caused by the strong hostility between
groups for the total population. Existence of buffer zones
and their positive impact is well established. Several studies
describe them, for example, between ants colonies (Adams
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2016), wolf territories (Mech 1977, 1994; Mech et al. 1980),
lions (Lehmann et al. 2008), and even human societies
(Hickerson 1965; Watrall 1968).

The shape of territories predicted by our model reproduce
some empirical observations. The model suggests that the
boundaries of the territories can be found by matching the
pressure of the competing predators (Maynard Smith 1974;
Adams 1998, 1990, 2001, 2003). Moreover, it suggests that
the hexagonal shape should be the most frequent in the ab-
sence of geographical disparities. This conclusion is supported
by the statistical analysis of the shape of territories that sin-
gles out hexagonal shapes as the most frequent configuration
(Grant 1968), and it is also suggested by some simple behav-
ioral models (Maynard Smith 1974).

The model we have proposed here opens up several new
directions of investigation. First, it is important to further
analyze its mathematical implications. The global structure
of the set of solutions of this system remains to be fully un-
derstood. The stability of solutions is an essential criterion to
discern realistic configurations. Therefore, stability needs to
be further investigated, in particular when considering the
impact of strong competition among predators on the total
population. This is important in order to discard spurious
(unstable) solutions. Another important development here
would be a more general dynamical model that would in-
volve the change in the number of groups or the aggressive-
ness between conspecifics as intrinsic variables that one seeks
to determine. As we have seen, type II functional responses
as well as other modifications of this model open many inter-
esting perspectives.

Clearly, it will also be important in the future to carry out
detailed comparisons of the consequences of the model or its
generalizations with observations. Devising experiments to
this end would be very useful. For instance, an experimental
setting whereby one can vary the carrying capacity could
shed light on the role this parameter plays in territory forma-
tion we notice here. All of this would make more precise one
of our main findings here, namely, that a high level of aggres-
siveness between groups can benefit the total size of the pred-
ator populations.
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