Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

January 18, 2012

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

・ロト ・ 通 ト ・ ヨ ト ・ ヨ ・ うへぐ

Study of a simplified model

Well posedness and basic properties

The role of the pump

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲□ ● ● ● ●

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

・ロト ・雪ト ・雪ト ・雪ト ・白ト

Blood composition has to stay constant in the body

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

- Blood composition has to stay constant in the body
- The food intake vary (they depend on time, on each individual,...)

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

- Blood composition has to stay constant in the body
- The food intake vary (they depend on time, on each individual,...)
- By filtering blood, kidney regules homeostatsy

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

- Blood composition has to stay constant in the body
- The food intake vary (they depend on time, on each individual,...)
- By filtering blood, kidney regules homeostatsy

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Nell posedness and pasic properties

The role of the pump

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The concentrating mechanism

Exchanges of solutes between the tubes makes the solute concentration variyng.

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Vell posedness and basic properties

The role of the pump

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲□ ● ● ● ●

The concentrating mechanism

Exchanges of solutes between the tubes makes the solute concentration variyng.

Physiological attempts : At equilibrium, we expect a liquid with a high concetration "down below".

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Vell posedness and basic properties

The role of the pump

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙

Study a simplified model to uderstand the mathematical problems underlying more realistic models

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidne

Study of a simplified model

Well posedness and basic properties

The role of the pump

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Study a simplified model to uderstand the mathematical problems underlying more realistic models

 The biologists were intersted in the equilibrium (lot of references in the domain) Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Study a simplified model to uderstand the mathematical problems underlying more realistic models

- The biologists were intersted in the equilibrium (lot of references in the domain)
- We suggest o consider a dynamic problem which would relax to the equilibrium

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Study a simplified model to uderstand the mathematical problems underlying more realistic models

- The biologists were intersted in the equilibrium (lot of references in the domain)
- We suggest o consider a dynamic problem which would relax to the equilibrium
- They were Ok

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidne

Study of a simplified model

Well posedness and basic properties

The role of the pump

・ロト ・雪ト ・雪ト ・雪ト ・白ト

Figure:

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidne

Study of a simplified model

Vell posedness and pasic properties

The role of the pump

・ロト・日本・モート モー シック

> 3 tubes, with a specific architecture, are bathing in a common interstitium

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidne

Study of a simplified model

Vell posedness and asic properties

The role of the pump

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙

> 3 tubes, with a specific architecture, are bathing in a common interstitium

A fluid circulates in the tubes

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidne

Study of a simplified model

Vell posedness and asic properties

The role of the pump

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > のへの

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidne

Study of a simplified model

Vell posedness and asic properties

The role of the pump

- > 3 tubes, with a specific architecture, are bathing in a common interstitium
- A fluid circulates in the tubes
- C is concentration of a solute dissolved in the fluid (it can be any intensive quantity)

Figure:

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Nell posedness and basic properties

The role of the pump

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Figure:

Assumptions:

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidne

Study of a simplified model

Vell posedness and basic properties

The role of the pump

・ロト ・日ト ・ヨト ・ヨー うへぐ

Figure:

Assumptions:

Tubes are water impermeable

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Vell posedness and basic properties

The role of the pump

Figure:

Assumptions:

- Tubes are water impermeable
- Solute movements across the wall tubes is driven by

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidne

Study of a simplified model

Vell posedness and basic properties

The role of the pump

・ロト ・日下・日下・ ・日・ ・ のへの

Figure:

Assumptions:

- Tubes are water impermeable
- Solute movements across the wall tubes is driven by
 - 1. solute diffusion

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidne

Study of a simplified model

Vell posedness and basic properties

The role of the pump

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Figure:

Assumptions:

- Tubes are water impermeable
- Solute movements across the wall tubes is driven by
 - 1. solute diffusion
 - 2. solute active transport in tube 3 : a pump extracts solute from tube 3 to the intersitium

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidne

Study of a simplified model

Vell posedness and basic properties

The role of the pump

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ● ● ●

The equations

$$\begin{cases} Q^{1} \frac{dC^{1}(x)}{dx} = J^{1}(x), & x \in [0, L], \\ Q^{2} \frac{dC^{2}(x)}{dx} = J^{2}(x), & x \in [0, L], \\ Q^{3} \frac{dC^{3}(x)}{dx} = J^{3}(x), & x \in [0, L], \\ C^{1}(0) = C_{0}^{1}, & C^{2}(0) = C_{0}^{2}, & C^{3}(L) = C^{2}(L), \end{cases}$$

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame. Aurelie Edwards, Nicolas Seguin

A D A A B A B A B A B A A B A

Study of a simplified model

 C_0^1 et C_0^2 : Solute concetration at the inlet Q^i : Water flow in tube *i*

 J^i : Solute flux acroos wall tube *i i*.

Fluxes

$$\begin{aligned} J^{1}(x) &= P^{1}(x)(C^{int}(x) - C^{1}(x)), \\ J^{2}(x) &= P^{2}(x)(C^{int}(x) - C^{2}(x)), \\ J^{3}(x) &= P^{3}(x)(C^{int}(x) - C^{3}(x)) - F(C^{3}(x), x), \end{aligned}$$

 P^i : Solute permeability of *i* C^{int} : Interstitial concentration $F(C^3, x) > 0$: Active transport with the condition

$$J^{1}(x) + J^{2}(x) + J^{3}(x) = 0.$$

A D A A B A B A B A B A A B A

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidne

Study of a simplified model

Vell posedness and basic properties

The role of the pump

Fluxes

$$\begin{aligned} J^{1}(x) &= P^{1}(x)(C^{int}(x) - C^{1}(x)), \\ J^{2}(x) &= P^{2}(x)(C^{int}(x) - C^{2}(x)), \\ J^{3}(x) &= P^{3}(x)(C^{int}(x) - C^{3}(x)) - F(C^{3}(x), x), \end{aligned}$$

 P^i : Solute permeability of *i* C^{int} : Interstitial concentration $F(C^3, x) > 0$: Active transport with the condition

$$J^{1}(x) + J^{2}(x) + J^{3}(x) = 0.$$

> There is no solute accumlation in the interstitium

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidne

Study of a simplified model

Nell posedness and basic properties

The role of the pump

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Fluxes

$$\begin{aligned} J^{1}(x) &= P^{1}(x)(C^{int}(x) - C^{1}(x)), \\ J^{2}(x) &= P^{2}(x)(C^{int}(x) - C^{2}(x)), \\ J^{3}(x) &= P^{3}(x)(C^{int}(x) - C^{3}(x)) - F(C^{3}(x), x), \end{aligned}$$

 P^i : Solute permeability of *i* C^{int} : Interstitial concentration $F(C^3, x) > 0$: Active transport with the condition

$$J^{1}(x) + J^{2}(x) + J^{3}(x) = 0.$$

- There is no solute accumlation in the interstitium
- ▶ This condition enables us to calculate C^{int}.

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidne

Study of a simplified model

Vell posedness and basic properties

The role of the pump

◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

$$F(C^3, x) \ge 0,$$
 $F(0, x) = 0,$ $0 \le F_C(C^3, x) \le \mu(x).$ (1)

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidne

Study of a simplified model

Well posedness and basic properties

The role of the pump

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲□ ● ● ● ●

$$F(C^3, x) \ge 0,$$
 $F(0, x) = 0,$ $0 \le F_C(C^3, x) \le \mu(x).$ (1)

Signification

► The pump can only transport the solute in one direction : from tube 3 to the intersitium

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

・ロト ・日ト ・ヨト ・ヨー うへぐ

$$F(C^3, x) \ge 0,$$
 $F(0, x) = 0,$ $0 \le F_C(C^3, x) \le \mu(x).$ (1)

Signification

- The pump can only transport the solute in one direction : from tube 3 to the intersitium
- No solute in tube $3 \Rightarrow$ No active transport

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$F(C^3, x) \ge 0,$$
 $F(0, x) = 0,$ $0 \le F_C(C^3, x) \le \mu(x).$ (1)

Signification

- The pump can only transport the solute in one direction : from tube 3 to the intersitium
- No solute in tube $3 \Rightarrow$ No active transport
- The pump can be saturated

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

$$F(C^3, x) \ge 0,$$
 $F(0, x) = 0,$ $0 \le F_C(C^3, x) \le \mu(x).$ (1)

Signification

- The pump can only transport the solute in one direction : from tube 3 to the intersitium
- No solute in tube $3 \Rightarrow$ No active transport
- The pump can be saturated

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

$$F(C^3, x) \ge 0,$$
 $F(0, x) = 0,$ $0 \le F_C(C^3, x) \le \mu(x).$ (1)

Signification

- The pump can only transport the solute in one direction : from tube 3 to the intersitium
- No solute in tube $3 \Rightarrow$ No active transport
- The pump can be saturated

Example: A Michaelis-Menten type non-linearity

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

・ロト・日本・日本・日本・日本・日本

$$F(C^3, x) \ge 0,$$
 $F(0, x) = 0,$ $0 \le F_C(C^3, x) \le \mu(x).$ (1)

Signification

- The pump can only transport the solute in one direction : from tube 3 to the intersitium
- No solute in tube $3 \Rightarrow$ No active transport
- The pump can be saturated

Example: A Michaelis-Menten type non-linearity

$$F(C^3, x) = V(x) \frac{C^3}{1+C^3}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidne

Study of a simplified model

Well posedness and basic properties

The role of the pump

$$F(C^3, x) \ge 0,$$
 $F(0, x) = 0,$ $0 \le F_C(C^3, x) \le \mu(x).$ (1)

Signification

- ► The pump can only transport the solute in one direction : from tube 3 to the intersitium
- No solute in tube $3 \Rightarrow$ No active transport
- The pump can be saturated

Example: A Michaelis-Menten type non-linearity

$$F(C^3, x) = V(x) \frac{C^3}{1+C^3}.$$

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidne

Study of a simplified model

Nell posedness and pasic properties

The role of the pump

The stationary and dynamic systems

The stationary system

$$\begin{cases} \frac{dC^{1}(x)}{dx} = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big] - C^{1}(x), \\ \frac{dC^{2}(x)}{dx} = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big] - C^{2}(x), \\ -\frac{dC^{3}(x)}{dx} = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big] - C^{3}(x) - F(C^{3}(x), x), \\ C^{1}(0) = C_{0}^{1}, \quad C^{2}(0) = C_{0}^{2}, \quad C^{3}(L) = C^{2}(L). \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît

The stationary and dynamic systems

The stationary system

$$\begin{cases} \frac{dC^{1}(x)}{dx} = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big] - C^{1}(x), \\ \frac{dC^{2}(x)}{dx} = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big] - C^{2}(x), \\ -\frac{dC^{3}(x)}{dx} = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big] - C^{3}(x) - F(C^{3}(x), x), \\ \frac{dC^{2}(x)}{dx} = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big] - C^{3}(x) - F(C^{3}(x), x), \\ \frac{dC^{2}(x)}{dx} = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big] - C^{3}(x) - F(C^{3}(x), x), \\ \frac{dC^{2}(x)}{dx} = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big] - C^{3}(x) - F(C^{3}(x), x), \\ \frac{dC^{2}(x)}{dx} = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big] - C^{3}(x) - F(C^{3}(x), x), \\ \frac{dC^{2}(x)}{dx} = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big] - C^{3}(x) - F(C^{3}(x), x), \\ \frac{dC^{2}(x)}{dx} = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big] - C^{3}(x) - F(C^{3}(x), x), \\ \frac{dC^{2}(x)}{dx} = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big] - C^{3}(x) - F(C^{3}(x), x), \\ \frac{dC^{2}(x)}{dx} = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big] - C^{3}(x) - F(C^{3}(x), x), \\ \frac{dC^{2}(x)}{dx} = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big] - C^{3}(x) - F(C^{3}(x), x) \Big]$$

The dynamic system $t \ge 0$ et $x \in [0, L]$,

$$\begin{cases} \frac{\partial C^{1}}{\partial t} + \frac{\partial C^{1}}{\partial x} = \frac{1}{3} \Big[C^{1} + C^{2} + C_{3} + F(C^{3}, x) \Big] - C^{1}, \\ \frac{\partial C^{2}}{\partial t} + \frac{\partial C^{2}}{\partial x} = \frac{1}{3} \Big[C^{1} + C^{2} + C^{3} + F(C^{3}, x) \Big] - C^{2}, \\ \frac{\partial C^{3}}{\partial t} - \frac{\partial C^{3}}{\partial x} = \frac{1}{3} \Big[C^{1} + C^{2} + C^{3} + F(C^{3}, x) \Big] - C^{3} - F(C^{3}, x), \\ C^{1}(0, t) = C_{0}^{1}, \qquad C^{2}(0, t) = C_{0}^{2}, \qquad C^{3}(L, t) = C^{2}(L, t), \end{cases}$$
(3)

with initial conditions : $C^1(x,0)$, $C^2(x,0)$, $C^3(x,0)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît

Main results

Theorem (Existence of a stationary solution)

Under assumptions (1), there is a weak soolution to (5), and it is positive.

Theorem (Existence and uniqueness of the dynamic problem solution)

There is a unique weak solution to the initial value problem (3), which lies in $BV([0, L] \times [0, T])$.

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

Sketch of the proof:

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲□ ● ● ● ●

For all $\alpha > 0$, there exists a solution in $(C[0, L])^3$ to the system

$$\begin{cases} \frac{dC^{1}(x)}{dx} + \frac{2}{3}C^{1}(x) + \alpha C^{1}(x) = \frac{1}{3} \Big[C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big], \\ \frac{dC^{2}(x)}{dx} + \frac{2}{3}C^{2}(x) + \alpha C^{2}(x) = \frac{1}{3} \Big[C^{1}(x) + C^{3}(x) + F(C^{3}(x), x) \Big], \\ -\frac{dC^{3}(x)}{dx} + \frac{2}{3} \Big[C^{3}(x) + F(C^{3}(x), x) \Big] = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) \Big], \\ C^{1}(0) = C_{0}^{1} > 0, \qquad C^{2}(0) = C_{0}^{2} > 0, \qquad C^{3}(L) = C_{L}^{3} \ge 0. \end{cases}$$

A D A A B A B A B A B A A B A

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

Tool : Banach Picard theorem

Sketch of the proof:

For all $\alpha > 0$, there exists a solution in $(C[0, L])^3$ to the system

$$\begin{aligned} & \frac{dC^{1}(x)}{dx} + \frac{2}{3}C^{1}(x) + \alpha C^{1}(x) = \frac{1}{3} \Big[C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big], \\ & \frac{dC^{2}(x)}{dx} + \frac{2}{3}C^{2}(x) + \alpha C^{2}(x) = \frac{1}{3} \Big[C^{1}(x) + C^{3}(x) + F(C^{3}(x), x) \Big], \\ & - \frac{dC^{3}(x)}{dx} + \frac{2}{3} \Big[C^{3}(x) + F(C^{3}(x), x) \Big] = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) \Big], \\ & C^{1}(0) = C_{0}^{1} > 0, \qquad C^{2}(0) = C_{0}^{2} > 0, \qquad C^{3}(L) = C_{L}^{3} \ge 0. \end{aligned}$$

A D A A B A B A B A B A A B A

Tool : Banach Picard theorem

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

Sketch of the proof:

For all $\alpha > 0$, there exists a solution in $(C[0, L])^3$ to the system

$$\begin{aligned} &\frac{dC^{1}(x)}{dx} + \frac{2}{3}C^{1}(x) + \alpha C^{1}(x) = \frac{1}{3} \Big[C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big], \\ &\frac{dC^{2}(x)}{dx} + \frac{2}{3}C^{2}(x) + \alpha C^{2}(x) = \frac{1}{3} \Big[C^{1}(x) + C^{3}(x) + F(C^{3}(x), x) \Big], \\ &- \frac{dC^{3}(x)}{dx} + \frac{2}{3} \Big[C^{3}(x) + F(C^{3}(x), x) \Big] = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) \Big], \\ &C^{1}(0) = C_{0}^{1} > 0, \qquad C^{2}(0) = C_{0}^{2} > 0, \qquad C^{3}(L) = C_{L}^{3} \ge 0. \end{aligned}$$

Tool : Banach Picard theorem

Compacity of the family (C¹_α, C²_α, C³_α) ⇒ After extraction, the sequence converges toward a solution to

$$\begin{cases} \frac{dC^{1}(x)}{dx} + \frac{2}{3}C^{1}(x) = \frac{1}{3} \Big[C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big], \\ \frac{dC^{2}(x)}{dx} + \frac{2}{3}C^{2}(x) = \frac{1}{3} \Big[C^{1}(x) + C^{3}(x) + F(C^{3}(x), x) \Big], \\ -\frac{dC^{3}(x)}{dx} + \frac{2}{3} \Big[C^{3}(x) + F(C^{3}(x), x) \Big] = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) \Big], \\ C^{1}(0) = C_{0}^{1} > 0, \qquad C^{2}(0) = C_{0}^{2} > 0, \qquad C^{3}(L) = C_{L}^{3} \ge 0. \end{cases}$$

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

$$\begin{cases} \frac{dC^{1}(x)}{dx} + \frac{2}{3}C^{1}(x) = \frac{1}{3} \Big[C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big], \\ \frac{dC^{2}(x)}{dx} + \frac{2}{3}C^{2}(x) = \frac{1}{3} \Big[C^{1}(x) + C^{3}(x) + F(C^{3}(x), x) \Big], \\ -\frac{dC^{3}(x)}{dx} + \frac{2}{3} \Big[C^{3}(x) + F(C^{3}(x), x) \Big] = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) \Big], \\ C^{1}(0) = C_{0}^{1} > 0, \qquad C^{2}(0) = C_{0}^{2} > 0, \qquad C^{3}(L) = C_{L}^{3} \ge 0. \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

$$\begin{cases} \frac{dC^{1}(x)}{dx} + \frac{2}{3}C^{1}(x) = \frac{1}{3} \Big[C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big], \\ \frac{dC^{2}(x)}{dx} + \frac{2}{3}C^{2}(x) = \frac{1}{3} \Big[C^{1}(x) + C^{3}(x) + F(C^{3}(x), x) \Big], \\ -\frac{dC^{3}(x)}{dx} + \frac{2}{3} \Big[C^{3}(x) + F(C^{3}(x), x) \Big] = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) \Big], \\ C^{1}(0) = C_{0}^{1} > 0, \qquad C^{2}(0) = C_{0}^{2} > 0, \qquad C^{3}(L) = C_{L}^{3} \ge 0. \end{cases}$$

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

We define

$$g: \, C^3_L\longmapsto \, C^2(L)-C^3(L)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

$$\begin{cases} \frac{dC^{1}(x)}{dx} + \frac{2}{3}C^{1}(x) = \frac{1}{3} \Big[C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big], \\ \frac{dC^{2}(x)}{dx} + \frac{2}{3}C^{2}(x) = \frac{1}{3} \Big[C^{1}(x) + C^{3}(x) + F(C^{3}(x), x) \Big], \\ -\frac{dC^{3}(x)}{dx} + \frac{2}{3} \Big[C^{3}(x) + F(C^{3}(x), x) \Big] = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) \Big], \\ C^{1}(0) = C_{0}^{1} > 0, \qquad C^{2}(0) = C_{0}^{2} > 0, \qquad C^{3}(L) = C_{L}^{3} \ge 0. \end{cases}$$

~

~

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

We define

$$g:C^3_L\longmapsto C^2(L)-C^3(L)$$

We have $\Big\{g(0)>0$, and $C^3_L>>1\Rightarrow g(C^3_L)<0\Big\}$

~

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\begin{cases} \frac{dC^{1}(x)}{dx} + \frac{2}{3}C^{1}(x) = \frac{1}{3} \Big[C^{2}(x) + C^{3}(x) + F(C^{3}(x), x) \Big], \\ \frac{dC^{2}(x)}{dx} + \frac{2}{3}C^{2}(x) = \frac{1}{3} \Big[C^{1}(x) + C^{3}(x) + F(C^{3}(x), x) \Big], \\ -\frac{dC^{3}(x)}{dx} + \frac{2}{3} \Big[C^{3}(x) + F(C^{3}(x), x) \Big] = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) \Big], \\ C^{1}(0) = C_{0}^{1} > 0, \qquad C^{2}(0) = C_{0}^{2} > 0, \qquad C^{3}(L) = C_{L}^{3} \ge 0. \end{cases}$$

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

We define

►

$$g: C_L^3 \longmapsto C^2(L) - C^3(L)$$

We have $\left\{g(0) > 0 \text{ , and } C_L^3 >> 1 \Rightarrow g(C_L^3) < 0\right\} \Rightarrow g \text{ cancels on } \mathbb{R}^+.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Sketch of the proof

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Sketch of the proof

We define a semi discrete scheme in space with step size Δ_x. Existence of a solution to this ODE using Cauchy-Lipschitz. Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲□ ● ● ● ●

Sketch of the proof

- We define a semi discrete scheme in space with step size Δ_x. Existence of a solution to this ODE using Cauchy-Lipschitz.
- A priori bounds uniform in Δ_x in BV

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

・ロト ・日ト ・日ト ・日 ・ クタウ

Sketch of the proof

- We define a semi discrete scheme in space with step size Δ_x. Existence of a solution to this ODE using Cauchy-Lipschitz.
- A priori bounds uniform in Δ_x in BV
- ▶ Compact embedding $BV([0, T] \times [0, L]) \subset L^1((0, T) \times (0, L)) \Rightarrow$ Extraction of a subsequence which converges to *C*.

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sketch of the proof

- We define a semi discrete scheme in space with step size Δ_x. Existence of a solution to this ODE using Cauchy-Lipschitz.
- A priori bounds uniform in Δ_x in BV
- ▶ Compact embedding $BV([0, T] \times [0, L]) \subset L^1((0, T) \times (0, L)) \Rightarrow$ Extraction of a subsequence which converges to *C*.
- ▶ The limit function *C* is a weak solution (3).

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

・ロト・日本・日本・日本・日本・日本

$$C^{i}(t=0) \ge 0,$$
 $C^{i}(t=0) \in L^{1}(0,L),$ $\frac{d}{dx}C^{i}(t=0) \in L^{1}(0,L).$ (4)

Theorem (Contraction principle)

IfC(x,0) et C(x,0) are two initial conditions, then the weak solutions satisfy

$$\int_0^L \left[|C^1 - \widetilde{C}^1| + |C^2 - \widetilde{C}^2| + |C^3 - \widetilde{C}^3| \right](x, t) dx \leq \int_0^L \left[|C^1 - \widetilde{C}^1| + |C^2 - \widetilde{C}^2| + |C^3 - \widetilde{C}^3|_{1} \right](x, 0) dx, \text{ and } C^2 = C^2 + C^2$$

A D A A B A B A B A B A A B A

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame. Aurelie Edwards, Nicolas Seguin

Well posedness and

$$C^{i}(t=0) \ge 0,$$
 $C^{i}(t=0) \in L^{1}(0,L),$ $\frac{d}{dx}C^{i}(t=0) \in L^{1}(0,L).$ (4)

Theorem (Contraction principle)

IfC(x,0) et C(x,0) are two initial conditions, then the weak solutions satisfy

$$\int_0^L \left[|C^1 - \widetilde{C}^1| + |C^2 - \widetilde{C}^2| + |C^3 - \widetilde{C}^3| \right](x, t) dx \leq \int_0^L \left[|C^1 - \widetilde{C}^1| + |C^2 - \widetilde{C}^2| + |C^3 - \widetilde{C}^3|_{1} \right](x, 0) dx, \text{ and } C^2 = C^2 + C^2$$

A D A A B A B A B A B A A B A

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame. Aurelie Edwards, Nicolas Seguin

Well posedness and

Sketch of the proof:

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Sketch of the proof:

• If C et \widetilde{C} are two solutions to (3), we define

$$egin{aligned} &d^{i}(x,t):=|C^{i}(x,t)-\widetilde{C}^{i}(x,t)|, &i=1,\ 2,\ 3. \end{aligned}$$
 $G(x,t):=|F(C^{3}(x,t),x)-F(\widetilde{C^{3}}(x,t),x)|\leq \mu(x)\ d^{3}(x,t)$

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Sketch of the proof:

• If C et \widetilde{C} are two solutions to (3), we define

$$d^{i}(x,t) := |C^{i}(x,t) - \widetilde{C}^{i}(x,t)|, \qquad i = 1, 2, 3.$$

 $G(x,t) := |F(C^{3}(x,t),x) - F(\widetilde{C^{3}}(x,t),x)| \le \mu(x) \ d^{3}(x,t)$

We substract the equations on C and C.

We multiply each line by sign $(C^i(x,t) - \widetilde{C}^i(x,t))$

We obtain

$$\begin{cases} \frac{\partial d^1}{\partial t} + \frac{\partial d^1}{\partial x} \leq -\frac{2}{3}d^1 + \frac{1}{3}(d^2 + d^3 + G), \\ \frac{\partial d^2}{\partial t} + \frac{\partial d^2}{\partial x} \leq -\frac{2}{3}d^2 + \frac{1}{3}(d^1 + d^3 + G), \\ \frac{\partial d^3}{\partial t} - \frac{\partial d^3}{\partial x} \leq -\frac{2}{3}(d^3 + G) + \frac{1}{3}(d^2 + d^1) \end{cases}$$

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Sketch of the proof:

• If C et \widetilde{C} are two solutions to (3), we define

$$\begin{aligned} d^{i}(x,t) &:= |C^{i}(x,t) - \widetilde{C}^{i}(x,t)|, \qquad i = 1, 2, 3. \\ G(x,t) &:= |F(C^{3}(x,t),x) - F(\widetilde{C^{3}}(x,t),x)| \le \mu(x) \ d^{3}(x,t). \end{aligned}$$

We substract the equations on C and C.

We multiply each line by sign $(C^i(x,t) - \widetilde{C}^i(x,t))$

We obtain

$$\begin{cases} \frac{\partial d^1}{\partial t} + \frac{\partial d^1}{\partial x} \leq -\frac{2}{3}d^1 + \frac{1}{3}(d^2 + d^3 + G), \\ \frac{\partial d^2}{\partial t} + \frac{\partial d^2}{\partial x} \leq -\frac{2}{3}d^2 + \frac{1}{3}(d^1 + d^3 + G), \\ \frac{\partial d^3}{\partial t} - \frac{\partial d^3}{\partial x} \leq -\frac{2}{3}(d^3 + G) + \frac{1}{3}(d^2 + d^1). \end{cases}$$

Summing the line and integrating over [0, L],

$$rac{d}{dt}\int_0^L [d^1+d^2+d^3]dx \leq -d^1(L,t)-d^3(0,t)\leq 0,$$

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Long time behavior and uniqueness of the stationary problem solution)

The solution C to the dynamic system converges to the unique solution \overline{C} to the stationary system in L^1 ,

$$\|C(x,t)-\overline{C}(x)\|_{L^1} \searrow_{t\to\infty} 0$$

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Theorem (Long time behavior and uniqueness of the stationary problem solution)

The solution C to the dynamic system converges to the unique solution \overline{C} to the stationary system in L^1 ,

$$\|C(x,t)-\overline{C}(x)\|_{L^1} \searrow_{t\to\infty} 0.$$

Sketch of the proof :

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ⊇ ○ ○ ○ ○

Theorem (Long time behavior and uniqueness of the stationary problem solution)

The solution C to the dynamic system converges to the unique solution \overline{C} to the stationary system in L^1 ,

$$\|C(x,t)-\overline{C}(x)\|_{L^1} \searrow_{t\to\infty} 0$$

Sketch of the proof :

▶ We construct super solution to (5) as large as wanted

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Study of a simplified model

Well posedness and basic properties

Theorem (Long time behavior and uniqueness of the stationary problem solution)

The solution C to the dynamic system converges to the unique solution \overline{C} to the stationary system in L^1 ,

 $\|C(x,t)-\overline{C}(x)\|_{L^1} \underset{t\to\infty}{\searrow} 0.$

Sketch of the proof :

- We construct super solution to (5) as large as wanted
- We prove that when the initial condition is a super/sub solution to the stationary state, the dynamic profile is monotonic in time forall x and converge to the seady state

A D A A B A B A B A B A A B A

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

Theorem (Long time behavior and uniqueness of the stationary problem solution)

The solution C to the dynamic system converges to the unique solution \overline{C} to the stationary system in L^1 ,

 $\|C(x,t)-\overline{C}(x)\|_{L^1} \searrow_{t\to\infty} 0.$

Sketch of the proof :

- ▶ We construct super solution to (5) as large as wanted
- We prove that when the initial condition is a super/sub solution to the stationary state, the dynamic profile is monotonic in time forall x and converge to the seady state
- ▶ 0 is a subsolution

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

Theorem (Long time behavior and uniqueness of the stationary problem solution)

The solution C to the dynamic system converges to the unique solution \overline{C} to the stationary system in L^1 ,

 $\|C(x,t)-\overline{C}(x)\|_{L^1} \searrow_{t\to\infty} 0.$

Sketch of the proof :

- ▶ We construct super solution to (5) as large as wanted
- We prove that when the initial condition is a super/sub solution to the stationary state, the dynamic profile is monotonic in time forall x and converge to the seady state
- 0 is a subsolution
- We stuck evey initial condition betwen 0 and a super solution.

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

Numerical method

These results give us that

- There is a unique solution to the stationary system
- We can efficietly approach this solution by solving the dynamic problem and let the time evolve

We use a finite-volume type scheme. The CFL condition :

$$\Delta t \leq rac{3\Delta x}{3+2\Delta x+2\Delta xV}.$$

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

Some results

(Vm=0)

(Vm=3)

<**□ > < □ > < (Vm=8)**> ≡ ∽へへ

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified nodel

Well posedness and basic properties

The role of the pump

- The concentration increases in all tubes along the axis of x
- ▶ In kidney, the concentration at point *x* = *L* is important : it is the point at which urine concentration is determined

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ⊇ ○ ○ ○ ○

The role of the pump

- The concentration increases in all tubes along the axis of x
- ▶ In kidney, the concentration at point *x* = *L* is important : it is the point at which urine concentration is determined

We want to identify the profile of C when $V \longrightarrow \infty$.

$$\int \frac{dC^{1}(x)}{dx} = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) + C^{3}(x) + V \frac{C^{3}(x)}{1 + C^{3}(x)} \Big] - C^{1}(x),$$

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

$$\frac{dC^{2}(x)}{dx} = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) + C^{3}(x) + V \frac{C^{3}(x)}{1 + C^{3}(x)} \Big] - C^{2}(x),$$

$$-\frac{dC^{3}(x)}{dx} = \frac{1}{3} \Big[C^{1}(x) + C^{2}(x) + C^{3}(x) + V \frac{C^{3}(x)}{1 + C^{3}(x)} \Big] - C^{3}(x) - V \frac{C^{3}(x)}{1 + C^{3}(x)} \Big]$$

$$C^{1}(0) = C_{0}^{1}, \qquad C^{2}(0) = C_{0}^{2}, \qquad C^{3}(L) = C^{2}(L).$$
(5)

◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Purpose: Explain the behavior of C_V when $V \longrightarrow \infty$

Theorem (Asymptotics)

Solutions to (5) satisfy

(

$$(C_V^1, C_V^2, C_V^3) \underset{V \longrightarrow +\infty}{\longrightarrow} (C^1, C^2, C^3) \qquad L^p(1 \le p < \infty), \text{ a.e.},$$

$$(\frac{dC_V^1}{dx}, \frac{dC_V^2}{dx}, \frac{dC_V^3}{dx}) \underset{V \longrightarrow +\infty}{\longrightarrow} (\mu^1, \mu^2, \mu^3) \qquad M^1[0, L].$$

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲□ ● ● ● ●

Purpose: Explain the behavior of C_V when $V \longrightarrow \infty$

Theorem (Asymptotics)

Solutions to (5) satisfy

$$\begin{aligned} & (C_V^1, C_V^2, C_V^3) \underset{V \longrightarrow +\infty}{\longrightarrow} (C^1, C^2, C^3) \qquad L^p (1 \le p < \infty), \text{ a.e.,} \\ & (\frac{dC_V^1}{dx}, \frac{dC_V^2}{dx}, \frac{dC_V^3}{dx}) \underset{V \longrightarrow +\infty}{\longrightarrow} (\mu^1, \mu^2, \mu^3) \qquad M^1[0, L]. \end{aligned}$$

with

$$\begin{cases} C^{1}(x) = \frac{C_{0}^{1} + C_{0}^{2}}{2} + \frac{C_{0}^{1} - C_{0}^{2}}{2}e^{-x}, \\ C^{2}(x) = \frac{C_{0}^{1} + C_{0}^{2}}{2} + \frac{C_{0}^{2} - C_{0}^{1}}{2}e^{-x}, \\ C^{3}(x) = 0. \end{cases} \begin{cases} \mu^{1} = \frac{1}{2} \left[(C_{0}^{2} - C_{0}^{1})e^{-x} + B\delta_{L} \right], \\ \mu^{2} = \frac{1}{2} \left[(C_{0}^{1} - C_{0}^{2})e^{-x} + B\delta_{L} \right], \\ \mu^{3} = B\delta_{L}. \end{cases}$$

where

$$B=\lim_{V\to\infty}C_V^3(L).$$

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Nell posedness and basic properties

The role of the pump

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

A priori bounds and compact embeddings

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

A priori bounds and compact embeddings

▶ The edges of the domain $C_V^1(L)$ and $C_V^3(0)$ are bounded in L^∞

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ
A priori bounds and compact embeddings

- ▶ The edges of the domain $C_V^1(L)$ and $C_V^3(0)$ are bounded in L^∞
- (C_V^i) is bounded in $BV[0, L] \cap L^{\infty}[0, L]$ and

$$V \| C_V^3 \|_{L^1[0,L]} \le K$$

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

A priori bounds and compact embeddings

- The edges of the domain $C_V^1(L)$ and $C_V^3(0)$ are bounded in L^{∞}
- (C_V^i) is bounded in $BV[0, L] \cap L^{\infty}[0, L]$ and

$$V \| C_V^3 \|_{L^1[0,L]} \le K$$

BV ⊂⊂ L^p[0, L] ⇒ existence of C (after extraction)

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ − つへで

A priori bounds and compact embeddings

- The edges of the domain $C_V^1(L)$ and $C_V^3(0)$ are bounded in L^{∞}
- (C_V^i) is bounded in $BV[0, L] \cap L^{\infty}[0, L]$ and

$$V \| C_V^3 \|_{L^1[0,L]} \le K$$

- BV ⊂⊂ L^p[0, L] ⇒ existence of C (after extraction)
- ▶ $L^1[0, L] \subset \subset M^1[0, L] \Rightarrow$ existence of μ

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

From the estimation

$$V \| C_V^3 \|_{L^1[0,L]} \le K$$

we have

$$C^{3} = 0.$$

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

From the estimation

$$V \|C_V^3\|_{L^1[0,L]} \le K$$

we have

$$C^{3} = 0.$$

▶ We choose test functions $\phi \in C^1[0, L]$ such that $\phi(0) = \phi(L) = 0$ ⇒ $\mu^3 = 0$ on]0, L[. Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

くしゃ (雪をくます) ほうのの()

Study of a simplified model

Well posedness and basic properties

From the estimation

$$V \|C_V^3\|_{L^1[0,L]} \le K$$

we have

$$C^{3} = 0$$

- We choose test functions $\phi \in C^1[0, L]$ such that $\phi(0) = \phi(L) = 0$ $\Rightarrow \mu^3 = 0$ on]0, L[.
- We choose test functions $\phi \in C^1[0, L] \Rightarrow \mu^3 = B\delta_{x=L} A\delta_{x=0}$.

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

A D A A B A B A B A B A A B A

Study of a simplified model

Vell posedness and basic properties

From the estimation

$$V \|C_V^3\|_{L^1[0,L]} \le K$$

we have

 $C^{3} = 0.$

- We choose test functions $\phi \in C^1[0, L]$ such that $\phi(0) = \phi(L) = 0$ $\Rightarrow \mu^3 = 0$ on]0, L[.
- We choose test functions $\phi \in C^1[0, L] \Rightarrow \mu^3 = B\delta_{x=L} A\delta_{x=0}$.

with

$$\lim_{V \to \infty} C_V^3(L) = B \ge 0, \qquad \lim_{V \to \infty} C_V^3(0) = A \ge 0.$$
(6)

A D A A B A B A B A B A A B A

Then, we prove A = 0, report in the system and do "analytical computations"

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Vell posedness and basic properties

The boundary layer

To perform numerical simulations, we have to precise the shape of the boundary layer.

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

The boundary layer

To perform numerical simulations, we have to precise the shape of the boundary layer.

Theorem (The boundary layer)

The limits of the boundary values are

$$C_V^1(L) \xrightarrow[V \longrightarrow +\infty]{} C_0^1 + C_0^2$$

$$C_V^2(L) = C_V^3(L) \xrightarrow[V \longrightarrow +\infty]{} C_0^1 + C_0^2 + (C_0^2 - C_0^1)e^{-L}$$

The behavior of C_V^3 for $x \simeq L$ is given by the inequalities

$$C_{V}^{3}(x) \leq C_{V}^{3}(L) \exp\left(-\frac{2}{3}VM(L-x)\right) + \frac{K}{V}\left[1 - \exp\left(-\frac{2}{3}VM(L-x)\right)\right]$$

$$C_{\mathbf{V}}^{3}(x) \geq C_{\mathbf{V}}^{3}(L) \exp\left(-\frac{2}{3}\mathbf{V}(L-x)\right) + \frac{\overline{K}}{\overline{\mathbf{V}}}\left[1 - \exp\left(-\frac{2}{3}\mathbf{V}(L-x)\right)\right]$$

A D A A B A B A B A B A A B A

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The difficulties are : When V grows,

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

The difficulties are : When V grows,

The CFL becomes tougher

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidne

Study of a simplified model

Well posedness and basic properties

The role of the pump

The difficulties are : When V grows,

- The CFL becomes tougher
- The number of mesh necessary to see the phenomenon becomes high next to L

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified nodel

Vell posedness and basic properties

The role of the pump

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 - の Q ()

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The role of the pump

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

We also work on realistic models

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

- We also work on realistic models
- We want to study the limit of the system for large L

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump

- We also work on realistic models
- We want to study the limit of the system for large L

Well-posedness and qualitative properties of a kidney model

Magali Tournus, directed by Benoît Perthame, Aurelie Edwards, Nicolas Seguin

The kidney

Study of a simplified model

Well posedness and basic properties

The role of the pump